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Abstract—Power efficiency is a critical design objective in modern
microprocessor design. To evaluate the impact of architectural-level
design decisions, an accurate yet efficient architecture-level power model
is desired. However, widely adopted data-independent analytical power
models like McPAT and Wattch have been criticized for their unreliable
accuracy. While some machine learning (ML) methods have been proposed
for architecture-level power modeling, they rely on sufficient known
designs for training and perform poorly when the number of available
designs is limited, which is typically the case in realistic scenarios.

In this work, we derive a general formulation that unifies existing
architecture-level power models. Based on the formulation, we propose
PANDA, an innovative architecture-level solution that combines the
advantages of analytical and ML power models. It achieves unprecedented
high accuracy on unknown new designs even when there are very limited
designs for training, which is a common challenge in practice. Besides
being an excellent power model, it can predict area, performance, and
energy accurately. PANDA further supports power prediction for unknown
new technology nodes. In our experiments, besides validating the superior
performance and the wide range of functionalities of PANDA, we also
propose an application scenario, where PANDA proves to identify high-
performance design configurations given a power constraint.

I. INTRODUCTION

Power efficiency is a critical design objective in modern micro-
processor design. With the continuous growth in chip complexity,
optimizing designs for better power efficiency requires a significant
amount of manpower and long turnaround time. Therefore, there is
a high demand for fast, yet high-fidelity early-stage power modeling
techniques to facilitate efficient design optimizations. For instance,
chip architects may need to efficiently evaluate the power efficiency,
as well as other design qualities of multiple new design configurations
at the architecture-level, before starting the detailed register-transfer
level (RTL) implementation and subsequent VLSI design flow.

However, traditional power modeling techniques fall short of meet-
ing the requirements. The existing standard VLSI design flow gen-
erates accurate power evaluations through multiple design stages,
including RTL implementation, logic synthesis, RTL simulation with
realistic workloads, and gate-level power simulation using commer-
cial tools [1], [2]. Unfortunately, this process is excessively time-
consuming for evaluating each architectural-level design configuration.
As for faster alternatives, widely-adopted architectural-level power
models such as McPAT [3]–[5], and Wattch [6] have been criticized for
their unreliable accuracy, as discussed in many prior studies [7], [8].
Despite some improvements in subsequent works, they are primarily
developed in-house to cater to proprietary designs [7].

In recent years, some ML methods [9]–[11] were proposed to
directly calibrate the existing analytical models like McPAT [3] (i.e.,
using McPAT output as ML models’ input). In this way, they may gen-
erate a more accurate estimation, when the target design architecture is
similar to already known designs in the training dataset. However, their
accuracies degrade significantly when applied to unknown new design
configurations. This problem is particularly severe when training data
is limited, which is frequently the case in practice. As mentioned,
the label collection of a new sample (i.e., new architecture-level
configuration) requires the actual implementation of it through VLSI
flow and workload-based simulations. This whole process can be
extremely time-consuming. A most recent ML work [10] proposes
to predict unknown new designs with transfer learning. But it still
requires a few ground-truth samples in the target configuration domain,
which is still time-consuming to generate in practice. In addition,
some design space exploration (DSE) works [12], [13] also develop
their own ML-based power models, which are trained iteratively based
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Fig. 1: A summary of architecture-level power modeling methods. Tra-
ditional analytical methods adopt inaccurate oversimplified handcrafted
model, while the accuracies of ML methods degrade significantly when
applied to unknown new configurations. PANDA unifies both analytical
and ML solutions, addressing their long-lasting limitations.

on labels collected during exploration. Besides still being limited by
training data, these models also typically cannot incorporate workload-
related information, thus failing to predict vector-based power values
for each specific workload.

In this work, we first propose our qualitative analysis of both
analytical [3], [6] and ML-based [9]–[13] architecture-level models,
as summarized in Fig. 1. When there is sufficient training data that
can cover the potential testing data the model will encounter, the ML
model performs better. However, when very limited data is available,
ML models can even be misleading, and traditional analytical methods
become the only option. Nevertheless, in realistic scenarios, most
design teams are somewhere in the middle, with a very limited number
of already-implemented architecture configurations that can be used
as training data. The high demand for the training data amount and
diversity sets a high barrier to the wide adoption of ML solutions [9]–
[13] in practice.

Inspired by these observations, we propose an innovative new
architectural-level power modeling solution named PANDA. As Fig. 1
shows, its name PANDA implies unifying white-box analytical mod-
els and black-box ML models1, benefiting from the complementary
advantages of both sides. PANDA adopts an analytical framework to
model the hierarchy of individual components. For each component, it
integrates an ML model with a simple customized analytical function,
which is based on identified key configuration parameters of this com-
ponent. In this way, the analytical function captures the key pattern of
the component, leaving more complex detailed patterns to be learned
by the ML portion. As a result, PANDA significantly outperforms
state-of-the-art solutions, especially when training data is very limited.
The low requirement on training data makes PANDA readily to be
widely adopted. In addition, unlike most existing ML methods [9]–
[13] that rely on existing analytical models like McPAT [3] as model
input features and simply perform calibration, PANDA is a standalone
solution without relying on any existing analytical models.

Besides power modeling, to comprehensively evaluate a design
at the architecture level, evaluations of other design qualities like
performance (i.e., number of cycles to complete a workload), area, and
energy are also desired. For performance, cycle-level simulators like
gem5 [14] are widely-adopted, but it is not sufficiently accurate. For
gate area, McPAT [3] is widely-adopted but inaccurate. To solve these
challenges, our solution PANDA also enables accurate evaluations of

1Please notice that most existing ML works [9]–[13] directly adopt analytical
model McPAT’s output as an input feature and perform calibration with ML.
But for the main part of their method, unlike analytical solutions, they do
not explicitly capture/encode any patterns based on architecture knowledge.
This is essentially different from how PANDA integrates analytical model,
and thus we categorize these prior works [9]–[13] as ML methods in Fig. 1.



Component i Configuration parameters Ci of each component Event parameters Ei of each component CPU part

BP FetchWidth, BranchCount BTBLookups, condPredicted, condIncorrect, commit.branches

Frontend
IFU

FetchWidth, DecodeWidth
fetch.insts, fetch.branches, fetch.cycles, numRefs, numStoreInsts, numInsts,

decode.runCycles, decode.blockedCycles, decode.decodedInsts, numBranches,
FetchBufferEntry, ICacheFetchBytes intInstQueueReads, intInstQueueWrites, intInstQueueWakeupAccesses,

fpInstQueueReads, fpInstQueueWrites, fpInstQueueWakeupAccesses
I-TLB ICacheTLBEntry itb.accesses, itb.misses

I-Cache ICacheWay, ICacheFetchBytes
icache.overallAccesses, icache.overallMisses, icache.ReadReq.mshrHits,

icache.ReadReq.mshrMisses, icache.tagAccesses

RNU DecodeWidth intLookups, renamedOperands, fpLookups, renamedInsts, runCycles, blockCycles, committedMaps

Execution

ROB DecodeWidth, RobEntry rob.reads, rob.writes

ISU
DecodeWidth, MemIssueWidth, IssuedMemRead, IssuedMemWrite, IssuedFloatMemRead, IssuedFloatMemWrite,

FpIssueWidth, IntIssueWidth IssuedIntAlu, IssuedIntMult, IssuedIntDiv, IssuedFloatMult, IssuedFloatDiv
Regfile DecodeWidth, IntPhyRegister, FpPhyRegister intRegfileReads, fpRegfileReads, intRegfileWrites, fpRegfileWrites, functionCalls

FU Pool MemIssueWidth, FpIssueWidth, IntIssueWidth intAluAccesses, fpAluAccesses

LSU LDQEntry, STQEntry, MemIssueWidth MemRead, InstPrefetch, MemWrite

Mem Access
D-TLB DCacheTLBEntry dtb.accesses, dtb.misses

D-Cache
DCacheWay, DCacheTLBEntry, dcache.ReadReq.accesses, dcache.WriteReq.accesses, dcache.ReadReq.misses, dcache.WriteReq.misses,
DCacheMSHR, MemIssueWidth dcache.overallMisses, dcache.MshrHits, dcache.MshrMisses, dcache.tagAccesses

Other Logic All All Other Logic

TABLE I: Our identified architecture-level design configuration parameters Ci and event parameters Ei of each ith component.

other design objectives.
The key contributions in this work can be summarized below.
• We analyzed the root cause of limited accuracy in both analytical

and ML-based power models, then propose an open-sourced
architecture-level power modeling solution named PANDA2,
which unifies these two major types of methods. Given different
training dataset sizes, it outperforms state-of-the-art baselines by
5% to 30% in error percentage. The gap is increasingly obvious
as the training data amount decreases.

• In this work, we provide a unified formulation that can express
all existing architecture-level power models including PANDA. It
helps to demonstrate the portion of analytical and ML techniques
in each method and guide the accuracy analysis when training
data amount varies.

• Unlike most ML methods that directly calibrate McPAT, PANDA
does not rely on any existing analytical power model like McPAT
to provide features. Instead, PANDA develops its own simpler
analytical function for each component based on architecture
knowledge, leaving more complex patterns to be learned by
the ML part. Such a standalone solution avoids propagating the
unreliable accuracies of McPAT.

• Besides power modeling, PANDA also models other design
objectives including design performance, area, and energy.

• Finally, PANDA further supports the power prediction targeting
unknown new technology nodes.

II. METHODOLOGY

A. CPU Components and Configuration Parameters Identification
For our target modern out-of-order (OoO) CPU core3, all major

architecture-level configuration parameters and event parameters ex-

Fig. 2: The architecture of our target Out-of-Order RISC-V CPU core. The
green blocks indicate key individual components modeled by PANDA.
These components correspond to the Table I. The yellow block refers to
the Other Logic indicated in Table I.

2It has been open-sourced at https://github.com/zqj2333/PANDA
3PANDA experiments on the RISC-V OoO CPU core BOOM [15]. It can be
extended to other CPU types with minor modifications.

plored in this work are listed in Table I. Denote all these configuration
parameters as a set C and all workload-related architecture-level
event parameters as E. To develop PANDA, we further identified
key CPU components that can be individually modeled in power
evaluation. Table I lists our identified configuration parameters and
event parameters related to each component, and Fig. 2 shows the
overall CPU architecture including these components.

As the CPU core architecture in Fig. 2 shows, all our modeled
individual components can be categorized into three main parts:
frontend, execution, and memory access, with each part comprised
of several key components, as introduced below.

• The CPU frontend part includes branch predictor (BP), instruction
fetch unit (IFU), instruction translation-lookaside buffer (I-TLB),
and L1 instruction cache (I-Cache).

• The CPU execution part includes rename unit (RNU), reorder
buffer (ROB), issue unit (ISU), register file (Regfile), and func-
tional unit pool (FU Pool), which includes the ALUs, floating-
point units, and other functional units.

• The CPU memory-access part includes data translation-lookaside
buffer (D-TLB), data cache (D-Cache), and the remaining logic
in load/store unit (LSU).

All other CPU design logic not covered by above components is
referred to as Other Logic.

Generally, assuming there are N components in the target CPU
design, our identified configuration parameters related to the ith

component are denoted as Ci, with C = {Ci | i ∈ [1, N ]}. Similarly,
denote the architecture-level event parameters related to this compo-
nent as Ei, with E = {Ei | i ∈ [1, N ]}. Both Ci and Ei of each
component can be simply looked up in Table I.

B. A General Formulation of Existing Power Modeling Methods
Fig. 3 further provides conceptual visualizations of existing analyt-

ical power models [3], [6], ML-based models [9]–[11], and PANDA,
under a similar framework, with all CPU configuration parameters C
and workload-related event parameters E as model input candidates.
We find that power modeling works can be expressed as a unified
formulation. So we first propose our formulation of the two types of
prior works, then we will start introducing our new method in the next
Subsection.

Formulation of ML works. Existing ML solutions [9]–[11] simply
build ML models targeting total power values, based on all available
design configuration parameters C and event parameters E, as shown
below4. The Fml denotes data-driven ML methods, including data-

4For simplicity, we do not include the McPAT output as a potential input feature
in the formulation of ML works.



(a) Analytical power model (b) ML-based power model (c) Component-level ML model (d) PANDA
Fig. 3: Illustration of different power modeling methods, yellow means the analytical parts and dark means the ML parts. (a) The analytical method [3],
[6]. (b) The ML method [9]–[13], the method mainly relies on ML model. (c) Component-level power model, a much weaker variant of PANDA for
ablation study. It builds an ML model to predict the power of each component. (d) PANDA, the model of each component consists of two sub-model,
the yellow one means the resource function, which is analytical, while the dark one means the ML model.

driven feature selection and the development of ML models. It can be
formulated below, with Pml denoting the power prediction value.

Pml = Fml ({C,E})

It can be rewritten as an equivalent general form below by explicitly
indicating configuration parameters of all components.

Pml = Fml ({Ci | i ∈ [1, N ]}, {Ei | i ∈ [1, N ]}) (1)

It means existing ML methods adopt the available configuration
parameters and event parameters information from all components to
evaluate the total power value of the whole design.

Formulation of analytical works. Different from ML methods,
analytical methods like McPAT [3] explicitly design separate analytical
models for each component, whose estimated power is denoted as
P i

ana, according to designers’ background knowledge. We formulate
such analytical methods for each component i as below,

P i
ana = F i

agg (Ei, F
i
res(Ci)) (2)

where an analytical ‘resource function’ F i
res(Ci) first calculates an in-

termediate value that reflects the resource consumption corresponding
to the configuration parameters. Then another ‘aggregation function’
F i

agg combines both resource values F i
res(Ci) and event parameters

Ei to calculate the power of this component for each workload.
We illustrate the aforementioned analytical methods with the actual

I-Cache component in CPU frontend as an example. The configuration
parameters Ci of I-Cache include the number of ways of the N-
set associated cache (i.e., ICacheWay) and the unit of line capacity
that I-Cache supports (i.e., ICacheFetchBytes). Analytical models like
McPAT compute the power consumption based on the number of hits
and misses. We can formulate its resource function F i

res as estimating
the energy per hit and miss based on the I-Cache configuration
parameters.

F i
res (ICacheWay, ICacheFetchBytes) = Energy per hit/miss (3)

Then aggregation function F i
agg combines the resources and corre-

sponding event parameters, including the number of hits and misses.
Then the actual implementation of Equation (2) for I-Cache component
can be expressed as below.

P i
ana = F i

agg (#Hit, #Miss, Energy per hit/miss)

=
#Hit ∗ Energy per hit + #Miss ∗ Energy per miss

Total benchmark execution time
Based on predicted component power, the total power is simply the

summation of all components Pana =
∑

i∈[1,N ] P
i
ana.

C. The General Formulation of PANDA
Formulation of PANDA. In contrast with ML methods in Equa-

tion (1) and analytical methods in Equation (2), we combine the
advantages of both methods in this work. The general expression for
each component i is shown below.

P i
PANDA = F i

agg (F i
ml(Ci, Ei), F

i
res(Ci))

Similar to the notations used in Equation (1)(2), here the F i
agg

and F i
res denote analytical functions, and F i

ml denotes an ML-
based function5. The general formulation combines the ML model
in Equation (1) and the analytical model in Equation (2). Now we
start to introduce each part and explain its advantages.

First, we design an analytical resource function F i
res(Ci) according

to background knowledge of how the configuration parameters Ci

will affect the power of this component. Compared with the similar
function in Equation (2), we capture the simpler yet primary pattern
in this function, and leave complex patterns to be learned by our ML
model.

Using the same I-Cache component example, for a typical N set-
associative I-Cache, each cache access requires accessing both tag and
data array in all cache ways simultaneously for lower latency. It causes
the power consumption to be roughly proportional to the number
of cache ways (i.e., ICacheWay). Regarding the ICacheFetchBytes,
it decides the size of the cache line of the I-Cache, so the power
of accessing a cache line in a way will scale proportionally with it.
Considering both factors, our resource function is as below.

F i
res(Ci) = ICacheWay ∗ ICacheFetchBytes (4)

Second, we propose the ML model F i
ml(Ci, Ei) based on both

configuration parameters and event parameters for each component i.
It learns all the detailed correlations beyond the simple correlation in
resource function. Finally, the estimations of ML model F i

ml and
resource function F i

res are multiplied to generate the final power
estimation. The finalized PANDA formulation is shown below.

P i
PANDA = F i

agg (F i
ml(Ci, Ei), F

i
res(Ci))

= F i
ml(Ci, Ei) ∗ F i

res (Ci) (5)

As Equation (5) shows, PANDA adopts a simple multiplication to
aggregate the ML model F i

ml and analytical resource function F i
res.

Although there may not be a definite answer, here we share three
intuitive thoughts behind this decision. 1) As the I-Cache example in
Equation 4 shows, our identified resource function for each compo-
nent is theoretically roughly proportional to the power consumption.
Therefore, there should be a linear relationship between F i

res and
power prediction, multiplication is obviously the simplest option. 2)
A possible alternative is to directly incorporate the resource function
F i

res as an input feature of ML model F i
ml. But this is not a good

option. Just like existing ML solutions calibrating McPAT, the ML
model accuracy degrades significantly when training data is limited.
When only used as ML model input, the strength of the analytical
resource function is not fully utilized to tackle the data availability
problem. 3) Another interesting perspective will be provided by the
analysis in Section IV-C, it demonstrates that such multiplication in
Equation (5) makes ML model learn to predict power/Fres, whose

5Please notice that the actual functions of F i
agg , F i

res, F i
ml in PANDA are

different from Equation (1)(2). We use the same notation to simplify the
expression and demonstrate the general form of our formulation.



Component F i
res Component F i

res

I-Cache ICacheWay * ICacheFetchBytes BP FetchWidth
ISU fReserveStationNum(DecodeWidth) IFU DecodeWidth

Regfile IntPhyRegister + FpPhyRegister I-TLB ICacheTLBEntry + bias
D-Cache DCacheWay * MemIssueWidth RNU DecodeWidth

LSU LDQEntry + STQEntry ROB RobEntry
D-TLB DCacheTLBEntry + bias FU Pool 1

Other Logic DecodeWidth + bias

TABLE II: PANDA’s resource function F i
res of each major component

i in the target out-of-order CPU core. They are derived based on the
background knowledge of CPU architecture design.

distribution across different configurations is much more uniform than
the power value alone. The result implies that ML model should learn
power/Fres better when the training data is limited. Combining these
three reasons, we believe multiplication is the correct option, and it
indeed provides excellent performance.

Substituting the resource function F i
res (Ci) in Equation (5) with

Equation (4), the power of the I-Cache example is shown below.

P i
PANDA = F i

ml(Ci, Ei) ∗ ICacheWay ∗ ICacheFetchBytes (6)

D. Resource Functions and ML Model of PANDA
Table II shows our proposed key resource functions6 F i

res for all
major components in the target out-of-order CPU core. We introduce
how we derive these functions below.

Similar to the aforementioned I-Cache example, for an N-way set-
associative L1 data cache (D-Cache), the power is roughly propor-
tional to the number of cache ways (i.e., DCacheWay). In addition,
modern CPUs support serving multiple read requests simultaneously
to improve throughput [15]. The power consumption is proportional to
the number of simultaneously accessed cache lines. This simultaneous
cache access number typically equals the number of memory-access
instructions issued each time (i.e., MemIssueWidth). Therefore, we
propose F i

res = DCacheWay * MemIssueWidth.
1 Frontend. The Frontend part of the Out-of-Order CPU consists

of 4 main components, including BP, IFU, I-TLB, and I-Cache. The
I-Cache has been discussed. (1) The branch predictor (BP) is one
of the most crucial parts of the frontend of modern OoO CPUs.
It has a significant impact on CPU performance. A more accurate
BP requires larger SRAM-based or register-based tables like the
branch history table, leading to higher power consumption. In many
modern CPUs, the size of the branch predictor is designed to scale
proportionally with the number of instructions being fetched each time
(i.e., FetchWidth) at the frontend. Therefore, we set F i

res = FetchWidth
as the BP’s resource function. (2) For Instruction Fetch Unit (IFU),
the size of its instruction fetch buffer and decode logic depends on
the DecodeWidth. In comparison, the impact of other components on
the IFU is secondary. Therefore, we set F i

res = DecodeWidth for
IFU. (3) For the I-TLB, its power is mainly affected by the number of
TLBEntry (i.e., ICacheTLBEntry), but there is also a part that remains
unchanged when increasing the number of TLBEntry. Therefore, we
set F i

res = ICacheTLBEntry + bias for I-TLB, with the bias denoting
a constant power value. Note that the bias will be readily estimated by
fitting this linear function on training data, as long as there are more
than one training samples.

2 Execution. The Execution part of the Out-of-Order CPU consists
of 5 main components, including RNU, ROB, ISU, Regfile, and FU
Pool. (1) For the renaming unit (RNU), the RNU typically has a
renaming width equal to the DecodeWidth. Therefore, we set F i

res

= DecodeWidth for RNU. (2) The reorder buffer (ROB), the power
consumption mainly depends on the size of it, so the power con-
sumption is proportional to the number of rob entries (i.e., RobEntry).
Therefore, we set F i

res = RobEntry for ROB. (3) The issue unit (ISU)
is a critical part of OoO CPUs as it manages instruction scheduling and

6In the remaining of this paper, we may directly denote the resource function
F i
res(Ci) as F i

res for simplicity.

pipeline information. The reserve stations, which store the scheduling
information, are the main component of ISU and largely affect the ISU
power consumption. The number of reserve station entries typically
depends on the number of instructions being decoded each time
(i.e., DecodeWidth). We set F i

res = fReserveStationNum(DecodeWidth),
where the fReserveStationNum is a look-up table that maps DecodeWidth
to the number of reserve stations. It will be available as part of the
CPU design. (4) The Regfile is mainly comprised of integer physical
registers and float physical registers. So the power is proportional to
the sum of the integer physical register size and the float physical
register size. Therefore, we set F i

res = IntPhyRegister + FpPhyReg-
ister for Regfile. (5) The FU Pool is very complex, comprised of a
variety of function units, and each function unit has different power
characteristics. Therefore, we set F i

res = 1 for FU Pool, handing this
over to the ML function.

3 Memory Access. The Memory Access part of the Out-of-Order
CPU consists of 3 main components, including LSU, D-TLB, and D-
Cache, the D-Cache has been discussed. (1) The load store unit (LSU)
is mainly comprised of the load queue and store queue. Its power
consumption is closely tied to the total number of entries in these
queues, denoted as LDQEntry + STQEntry. Therefore, we set F i

res =
LDQEntry + STQEntry for LSU. (2) For the D-TLB, this component
is very similar to I-TLB. Similarly, we set F i

res = DCacheTLBEntry
+ bias for D-TLB.

4 Other Logic. ‘Other Logic’ is the most complex part of the
CPU, consisting of all other control and pipeline logic except existing
components. It may seem that the power consumption of ‘Other Logic’
is difficult to estimate, but we have identified DecodeWidth as a useful
indicator. DecodeWidth determines the number of instructions that can
be decoded simultaneously, and it typically also equals the width of
several subsequent pipeline stages, such as the integer rename width,
ROB width, and commit width, etc. Therefore, DecodeWidth can be
referred to as the general pipeline width of the whole CPU design.
A large portion of the control logic and pipeline logic scale with
this pipeline width, while other parts remain unchanged even as other
components of the CPU scale out. Therefore, we derive the resource
function as F i

res = DecodeWidth + bias, with the bias denoting a
constant power value. Similar to I-TLB, the bias can be estimated
using training data.

As for the ML model F i
ml of each component, we all adopt

Gradient Boosting Trees [16] like XGBoost [17], a widely-adopted
machine learning algorithm for tabular data type, to build regressors.
To avoid introducing our engineers’ bias during ML model hyper-
parameter tuning, for all these XGBoost ML models in PANDA, we
simply adopt the default hyper-parameters (i.e., max depth=6, num
of estimatros=100) without any further parameter tuning. PANDA is
already sufficiently accurate in this case.

E. Other Design Quality Prediction
Besides power prediction, PANDA also supports evaluation of other

design qualities including area, performance (i.e., the number of cycles
to complete a given workload), and energy. (1) The area model is
similar to aforementioned component-level power model, but only uses
configuration parameters Ci as features, without including workload
event parameters Ei. (2) For performance prediction, we observe
that gem5 [14] achieves a relatively accurate correlation R, but with
obvious absolute errors. Therefore, we simply develop one overall
performance model to calibrate gem5 [14]. Specially, we directly
use the ratio between ground-truth execution cycle numbers and the
gem5 evaluation as the training label. The input features include all
configuration parameters C and selected event parameters E. Con-
sidering the branch prediction and long latency of memory access are
critical for the performance, we select these key event parameters from
E as features: {numCycles, idleCycles, branchPred condPredicted,
branchPred condIncorrect, icache overallMisses, icache ReadReq.-
mshrMisses, dcache ReadReq.misses, dcache WriteReq.misses, dcache
overallMisses, dcache overallMshrMisses}. (3) Finally, PANDA can
naturally evaluate the energy consumption of a given workload, by
combining its performance prediction with power prediction.



Configuration Parameter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 SP1 SP2

FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8
DecodeWidth 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1 5

FetchBufferEntry 5 8 16 8 16 24 18 24 30 24 32 40 30 35 40 10 40
RobEntry 16 32 48 64 64 80 81 96 114 112 128 136 125 130 140 16 140

IntPhyRegister 36 53 68 64 80 88 88 110 112 108 128 136 108 128 140 36 140
FpPhyRegister 36 48 56 56 64 72 88 96 112 108 128 136 108 128 140 36 140

LDQ/STQEntry 4 8 16 12 16 20 16 24 32 24 32 36 24 32 36 4 36
BranchCount 6 8 10 10 12 14 14 16 16 18 20 20 18 20 20 6 20

MemIssue/FpIssueWidth 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 1 2
IntIssueWidth 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 1 5

DCache/ICacheWay 2 4 8 4 4 8 8 8 8 8 8 8 8 8 8 2 2
DTLBEntry 8 8 16 8 8 16 16 16 32 32 32 32 32 32 32 8 32

DCacheMSHR 2 2 4 2 2 4 4 4 4 4 4 8 8 8 8 2 8
ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4

TABLE III: The configurations that we used in our experiment. The first 15 configurations (named C1-C15) are normal configurations, which is divided
into 5 domains depending on the DecodeWidth, the last two configuration (named SP1, SP2) are special case that will be used in the case study part.
To be specific, the SP1 is derived from C1, which is a CPU with a large BP but small other components, the SP2 is derived from C15, which is a
CPU with a small D-Cache and I-Cache but large other components.

F. Transferring to New Technology

As the process technology node keeps shrinking, when power model
is trained on labels from a certain technology node, it is often desirable
to know the power of an unknown design in a new technology node.
This task is obviously challenging. Designers often simply scale the
power consumption from known technology to a new technology based
on P = CV 2, but it is over-simplified. We propose a new ML method
to predict the power consumption of an unknown configuration under
a new unknown technology node. It naturally involves two steps. 1)
Predict power of the unknown configuration with PANDA. The result
corresponds to the technology node where PANDA is trained. We
refer to it as the source node. 2) Based on the result, transfer the
prediction to the new unknown technology node, named the target
node. The insight to achieve the transferring is, when transferring to
a new technology node, the impact on large designs i.e. BOOM CPU,
and those very small designs is similar. It gives us an opportunity to
predict the transformation of large designs using the ground-truth of
small designs, which can be generated without too much cost.

We build an ML model for this transferring task. For each design,
we use the ratio between power under target technology and source
technology as the label. The features include (1) PANDA predicted
power consumption under source node, (2) the ratio between target
and source’s scale and voltage. For example, when the source node
is 28nm 0.8V, the target one is 40nm 1.1V, the feature is 40/28
and 1.1/0.8, (3) the directly-scaled power using P = CV 2. Take
the previous 28nm to 40nm example, this scaled power is PANDA-
predicted power at 28nm multiplied by 40/28∗(1.1/0.8)2. We collect
ground-truth from small designs under multiple different technology
nodes and train this transferring model only using small designs.
Please notice that only one model is trained to perform transferring
among multiple technology nodes. After training, this model can make
transfer predictions between any two technology nodes.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

To evaluate our method, we generate a dataset by collecting RTL
code and performing RTL simulation, with Chipyard [18] v1.8.1. For
a fair comparison with prior works [9], we employed 15 similar RISC-
V BOOM [15] CPU configurations in Table III, named C1 to C15,
ranging from small to large design sizes. Similar to prior works [10],
[13], we further divided these 15 configurations into five domains
based on their DecodeWidth, which is a key configuration parameter
that affects multiple pipeline stages. The detailed configurations are
given in Table III. For vector-based power simulation, we used eight
workloads in the riscv-tests [19] suite, including dhrystone, median,
multiply, qsort, rsort, towers, spmv, and vvadd.

We performed RTL simulation at 1GHz with Synopsys VCS® [20].
The logic synthesis and ground-truth power simulation are performed
with Synopsys Design Compiler® [21] and PrimePower [2], respec-
tively. For the technology node, we used the TSMC 40nm standard
cell library and the corresponding Memory Compiler. Furthermore, in
our evaluation of cross-technology node prediction, we also adopt the
TSMC 28nm and 65nm standard cell libraries.

B. Summary of Baseline Methods

We compared PANDA with representative prior works, including
(a) McPAT (+gem5 [14] [22]) [3], a typical analytical model, (b)
PowerTrain [11], a widely-adopted lightweight ML-based model, and
(c) McPAT-Calib [9], which is the state-of-the-art ML-based model.
All of these three works rely on McPAT as part of the power model.
Additionally, (d) TCAD’17 [23], a representative on-chip power meter
design method based on performance counters, is included as a base-
line. On-chip power meters are not originally designed for architecture-
level power modeling, we include them for the completeness of our
experiment. For this task, the performance counters are replaced with
the event parameters generated by gem5 [14].

For a recent work ASPDAC’23 [10], it mainly proposed a transfer
learning algorithm to predict the power of configurations in the
unknown domain. But we emphasize that such transfer learning
still requires sampling in the unknown domain, which necessitates
the RTL implementation and subsequent synthesis of the sampled
configurations. It is quite costly, since although the Chipyard can
generate RTL code automatically, it is not a always the case in the
industry, where implementing RTL for a new CPU configuration may
require significant engineering effort. What’s more, the core power
prediction part of ASPDAC’23 is similar to McPAT-Calib [9], by
adopting multi-layer perceptron as its ML model. Therefore, we do
not present it separately.

Besides using prior works as baselines, we also include two extra
baselines. (e) To further demonstrate the potential of McPAT without
inaccuracies introduced by its internal coefficients, an ideal scaling
factor is derived based on ground-truth power of all configurations.
It scales the power prediction of McPAT towards the ground-truth.
This baseline with superior accuracy than McPAT is named McPAT-
plus. (f) We also build a much weaker variant of PANDA with limited
architecture-level knowledge, named the Component-level model, as
shown in Fig. 3(c). It builds ML models for each component with
related configuration parameters and event parameters in Table I as
features. But it does not adopt the resource functions in PANDA.

We conduct multiple experiments with different amount of training
data. When the number of known configurations as training data is n



Fig. 4: The MAPE and R of different models under different number of
unknown configurations. The McPAT-plus is a correctly calibrated version
of McPAT, directly scaled with ground-truth. PANDA’s superior accuracy
over baselines increases as the training data decrease.

(n ∈ [1, 14]), the 15−n unknown configurations will be testing data7.
The experiment setup and actual data used for training and testing
are strictly the same for all methods during comparison. We evaluate
performance with the mean absolute percentage error (MAPE)8 and
correlation coefficient R averaged over all testing configurations.

C. Power Prediction Results
Fig. 4 shows the accuracy of PANDA and our baseline models

when they are trained with different number of known configurations.
PANDA consistently achieves the lowest MAPE and highest R. The
superior performance of PANDA over all ML-based baselines is
increasingly obvious as the number of known configurations (i.e.,
training data amount) in the x-axis decreases. This trend validates
PANDA’s excellent accuracy given very limited training data.

Here we try to analyze the reasons behind the performance gap
between PANDA and representative ML solutions McPAT-Calib [9]
and PowerTrain [11] in Fig. 4. By integrating architecture-level
knowledge into its resource function, PANDA can efficiently capture
how the configuration parameters modification will affect the power
based on very limited training data. In comparison, in previous ML

7For example, when n is 13, there are 13 known configurations for training and
2 testing configurations for testing. We sequentially traverse testing sets with
neighboring configurations (C1,C2), ..., (C14,C15), and (C15,C1). Altogether
15 models are trained & evaluated, corresponding to each testing set. These
predictions on each testing configuration are averaged as the final prediction.

8MAPE = 1/n ∗
∑n

k=1 |yk − ŷk|/yk , yk is label and ŷk is prediction.

solutions, too much knowledge needs to be learned when training a
single ML model from scratch. Also, since they rely on McPAT, they
may be limited by McPAT’s poor accuracy when approaching a higher
accuracy. Another ML baseline TCAD’17 [23] naturally performs
poorly since it is designed for on-chip power meter development
instead of this task.

As for analytical model baseline McPAT-plus, as a correctly-scaled
version of McPAT, its accuracy remains unchanged in Fig. 4 regardless
of training data amount. Without ML model, its overall accuracy is
limited. By unifying both analytical and ML techniques, PANDA
outperforms it significantly even when there is only one known
configuration (n = 1)9 for training. For the original McPAT, while
the R is the same as McPAT-plus, the absolute error MAPE is higher
than 1000%, so it is not presented in the figure.

Finally, the component-level model, as a weaker variant of PANDA
with limited architecture knowledge, provides a great decomposition
of PANDA’s high performance. Its comparison with PANDA can
be viewed as a simple ablation study. By training ML models at
component level, it maintains a reasonable accuracy when the number
of known configurations n > 10 and outperforms other ML baselines.
But PANDA soon outperforms it significantly when training data
further decreases. Such a gap shows the contribution of resource
functions with architecture knowledge.

In Fig. 5, 7, 8, we further visualize the detailed prediction results
when the number of known configurations (n) for training is 14, 5, and
1, respectively. Additionally, in Fig. 6 we introduce a new scenario
called the ‘unknown domain’, where each time there are 4 domains
as known training sets (with 12 configurations) and 1 domain as the
testing set (with 3 configurations). The testing set will traverse all 5
domains to generate predictions on all 15 configurations.

D. Prediction of Other Design Qualities
Besides power prediction, Table IV shows PANDA’s prediction

accuracy on area, performance, and energy. Since the majority of prior
power models do not further evaluate these design qualities, in this
part, we use McPAT as the baseline for area prediction, and gem5
as the baseline for performance prediction. For the energy baseline,
we collect the performance predicted by gem5 and power predicted
by McPAT-Calib to compute the energy. Table IV also adopts the
‘unknown-domain’ scenario, where each time 1 unknown domain is

9For n = 1, as a special case, the bias in a few resource function has to be
derived based on designers observation. But it is strictly fitted with training
data when n ≥ 2.

(a) McPAT (b) McPAT plus (c) McPAT-Calib (d) Component-level Model (e) PANDA
Fig. 5: Accuracy comparison for the known 14 (unknown 1) configuration scenario.

(a) McPAT (b) McPAT plus (c) McPAT-Calib (d) Component-level Model (e) PANDA
Fig. 6: Accuracy comparison for the unknown-design-domain scenario.



(a) McPAT (b) McPAT-plus (c) McPAT-Calib (d) Component-level Model (e) PANDA
Fig. 7: Accuracy comparison for the known 5 (unknown 10) configuration scenario.

(a) McPAT (b) McPAT plus (c) McPAT-Calib (d) Component-level Model (e) PANDA
Fig. 8: Accuracy comparison for the known 1 (unknown 14) configuration scenario.

Design Quality
Baseline PANDA

Baseline Method MAPE(%) R MAPE(%) R

Area McPAT 416.56 0.98 2.92 0.99
Performance gem5 26.79 0.98 6.69 0.98

Energy gem5 + McPAT-Calib 31.87 0.97 9.51 0.98

TABLE IV: The comparison of Area, Performance, and Energy prediction
between baseline and PANDA

Source Target MAPE-Original(%) MAPE-Scaled(%) MAPE-PANDA(%)

28 nm 40 nm 51.51 30.98 14.83
28 nm 65 nm 73.12 40.42 10.16
40 nm 28 nm 115.98 20.03 6.24
40 nm 65 nm 43.39 10.07 11.66
65 nm 28 nm 289.02 25.52 5.28
65 nm 40 nm 83.94 5.91 14.24

Average 109.49 22.16 10.40

TABLE V: Cross-technology prediction by 1) prediction at source technol-
ogy, 2) directly-scaled prediction towards target technology, 3) prediction
transferred to target technology by PANDA.

used as the testing set. The baseline methods achieve good correlation
in all 15 configurations but with a huge absolute error value. In
comparison, PANDA achieves even higher correlation and keeps the
error within 10%.

E. Cross-Technology Prediction

We evaluate the cross-technology prediction accuracy of PANDA
with three different technology nodes, TSMC 28nm 0.8V, TSMC
40nm 1.1V, and TSMC 65nm 1.2V. Our proposed transfer model
is trained based on about 20 small designs implemented with all
three technologies. On average, these small designs consist of only
thousands of gates, in contrast with 0.3 million gates in the smallest
BOOM configuration C1. For any pair of source and target technology
nodes, the transfer model will predict the power of an unknown design
configuration at the target technology node, based on PANDA power
model’s prediction at the source node.

We calculate 1) the original prediction of source technology based
on PANDA’s power model; 2) the directly-scaled prediction towards
the target technology based on CV 2; 3) the transferred prediction
with our proposed transferring model. We compare these predictions
with ground-truth labels at the target technology node, evaluating the
MAPE. Their accuracies are shown in Table V. The average MAPE
of scaled prediction and model prediction are 22.16% and 10.40%,
respectively, showing that PANDA outperforms analytically scaling.

IV. DISCUSSION

To further demonstrate the advantages of PANDA, we present two
application scenarios as case studies. Finally, we present an analysis
to verify the correctness of the design of PANDA.

A. Case Study 1: Power Prediction for Special Configurations
For existing 15 configurations in the experiment, from the smallest

C1 to the largest C15, all component parameters monotonically
increase with a similar trend. As a result, although the total power
increases from C1 to C15, the power percentage of each component
does not vary much. However, in practice, this is not always the case,
as realistic configurations may have different percentages of power
consumption for some key components. To study this scenario, we
design two special cases SP1 and SP2, as already shown in Table III.
SP1 is with a large BP but small other components, while SP2 is with
a small D-Cache and I-Cache but large other components. For such
special-case designs, prior ML methods may perform poorly due to a
lack of awareness of CPU hierarchy, which makes it difficult to capture
how each component contributes to the total power consumption. In
comparison, PANDA can well handle any configuration parameter
combinations by modeling each component separately.

Fig. 9 compares the predictions on SP1 and SP2 by McPAT-
Calib and PANDA trained with C1 to C15, showing the MAPE10.
Despite all 15 configurations are used for training, McPAT-Calib is
very inaccurate with MAPE=22.8%. Compared with McPAT-Calib’s
average MAPE=5.7% when trained with 14 known configurations in
Fig. 4, this significantly lower accuracy indicates the challenges of
special cases. In comparison, PANDA prediction remains accurate
with MAPE<5% for these special cases. It implies that PANDA can
maintain a reasonably high accuracy on almost any new configuration.

B. Case Study 2: Design Space Exploration with PANDA
Design space exploration (DSE) is an important task of CPU archi-

tects. For example, given a power constraint, architects explore which
configuration achieves the highest performance. However, generating
ground-truth power and performance of each design configuration

Design Name Config Parameter (same order as TABLE III) Power Performance

Engineer Design 4, 3, 24, 96, 96, 96, 24, 16, 2, 4, 2, 8, 8, 2 0.79 2.08
DSE Design 4, 4, 32, 128, 96, 96, 32, 16, 2, 4, 2, 8, 4, 2 0.80 2.30

TABLE VI: The comparison of design selected by engineer and design
selected by DSE, the parameters are in the same order as TABLE III.
Power unit is (W) and performance is normalized by C1’s performance.

10Since there are only two configurations, correlation R is not a good metric.



(a) McPAT-Calib (b) PANDA
Fig. 9: The prediction of two special cases with different patterns in
configuration parameters from the training set (C1-C15), blue means a
CPU with a large Frontend but small other components, green means a
CPU with a small I-Cache and D-Cache but large other components.

requires timing-consuming design implementation. PANDA, as an
accurate architecture-level power and performance model, naturally
supports efficient DSE.

We assume a DSE task where configurations C1-C15 are known and
PANDA is already trained by them. Since none of these configurations
has the power value in the range of 0.7 to 1W, we let PANDA explore
this unknown region. The specific task is to select a configuration
with maximum performance, with power consumption less or equal
to 0.8W. Here we compare the performance of PANDA and human en-
gineers, who manually set configuration parameters using the ground-
truth power of C1-C15 as a reference.

Then we start DSE by efficiently predicting almost all reason-
able configuration parameter combinations in the design space with
PANDA, then select high-performance configurations that satisfy the
power constraint. We tolerate configurations with predicted power
slightly higher than the constraint. This process is fast due to the effi-
ciency of PANDA. We then start to implement selected configurations
based on the rank of the predicted performance values. This process
stops when one configuration’s implementation proves to satisfy the
power constraint. Due to the accuracy of PANDA, we reach the power
constraint after very few trials. Human engineers go through a similar
validation process, they craft and implement new configurations until
power constraint is met.

The ground-truth power and performance of PANDA-explored con-
figuration are shown in the Table VI, with a power of 0.80 W and a
performance of 2.30. Compared with the engineer’s selection, which is
also close to the power constraint, it achieves 0.22 higher performance.
It demonstrates PANDA’s potential in DSE applications. Compared
with existing DSE works that invoke VLSI design flow iteratively,
once PANDA is trained with a few known samples, it requires no
more sampling or update for the space exploration task.

C. Resource Function and Power Analysis

Finally, to verify the correctness of PANDA, we first visualize the
correlation between ground-truth component power and the corre-
sponding resource function F i

res in Fig. 10. For D-Cache and ISU,
power mainly scales proportionally with the resource function (x-axis).
As for the Other Logic, we show DecodeWidth in x-axis, and its
power is also proportional to the resource function DecodeWidth +
bias. These data patterns indicate the correctness of PANDA’s resource
function F i

res, which will be multiplied by ML model to generate
power prediction, as defined by Equation (5).

From another perspective, Fig. 10 also shows that when the re-
source function is fixed in x-axis, there are still many power value
variations in the vertical direction, caused by the difference in other
configuration parameters and event parameters. These variations will
be captured by PANDA’s ML part of each component F i

ml. According
to Equation (5), the ML model F i

ml is actually trained to predict the
power divided by the resource function (i.e., power/F i

res).
To analyze such vertical power variation for different resource

function values, we visualize the power distribution of D-Cache in

(a) D-Cache (b) ISU (c) Other Logic
Fig. 10: Component power vs its resource function F i

res, except (c), which
demonstrates the relationship between power and DecodeWidth, because
the bias in its resource function needs to be estimated.

(a) Original Distribution (b) Distribution for F i
ml to learn

Fig. 11: Distribution of D-Cache power, it corresponds to the power
distribution of points of Fig. 10(a). (a) Original power, learned by existing
ML methods. (b) Power divided by resource function (power/F i

res),
learned by PANDA’s ML model. PANDA’s ML part F i

ml learns more
similar distributions, benefiting accuracy when training data is limited.

Fig. 11(a). It corresponds to vertical points in Fig. 10(a)11. We further
visualize the distribution of power/F i

res in Fig. 11(b). The comparison
between Fig. 11(a) and Fig. 11(b) shows an interesting pattern and
provides another explanation of the superior performance of PANDA.

In Fig. 11(a), the power distributions of configurations with different
resource function values are largely different. As a result, when
training data is limited, ML models may only see training samples
from a few distributions, then perform bad on testing designs from
unknown other distributions. The gap between different distributions
is large, causing an obvious prediction error. In comparison, PANDA
actually trains the ML model to predict power/F i

res, as shown
in Fig. 11(b). This power/F i

res objective provides obviously more
similar distributions. Even when training data is limited, the ML
part’s prediction will fall into a similar distribution anyway, without
causing a large error. This analysis provides one more rationale for
our multiplying ML model with resource function in PANDA.

V. CONCLUSION

In this work, we propose PANDA, an architecture-level power
model that unifies analytical and machine learning techniques. PANDA
develops its own simpler analytical function for each component
based on architecture knowledge, leaving more complex patterns to
be learned by the ML part. It significantly outperforms state-of-the-art
solutions, and maintains a high accuracy even with the very limited
number of known configurations for training. Such a data-friendly
solution lowers the barrier to adopting ML techniques by design teams,
and thus PANDA is a compelling addition to the architects’ toolbox.
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