
MasterRTL: A Pre-Synthesis PPA Estimation Framework
for Any RTL Design

Wenji Fang1,2, Yao Lu2, Shang Liu2, Qijun Zhang2, Ceyu Xu3, Lisa Wu Wills3, Hongce Zhang1,2*, Zhiyao Xie2*

1Hong Kong University of Science and Technology (Guangzhou),
2Hong Kong University of Science and Technology, 3Duke University

*Corresponding Author: {hongcezh, eezhiyao}@ust.hk

Abstract—In modern VLSI design flow, the register-transfer level
(RTL) stage is a critical point, where designers define precise design
behavior with hardware description languages (HDLs) like Verilog. Since
the RTL design is in the format of HDL code, the standard way to
evaluate its quality requires time-consuming subsequent synthesis steps
with EDA tools. This time-consuming process significantly impedes design
optimization at the early RTL stage. Despite the emergence of some recent
ML-based solutions, they fail to maintain high accuracy for any given
RTL design. In this work, we propose an innovative pre-synthesis PPA
estimation framework named MasterRTL. It first converts the HDL code
to a new bit-level design representation named the simple operator graph
(SOG). By only adopting single-bit simple operators, this SOG proves to
be a general representation that unifies different design types and styles.
The SOG is also more similar to the target gate-level netlist, reducing the
gap between RTL representation and netlist. In addition to the new SOG
representation, MasterRTL proposes new ML methods for the RTL-stage
modeling of timing, power, and area separately. Compared with state-
of-the-art solutions, the experiment on a comprehensive dataset with 90
different designs shows accuracy improvement by 0.33, 0.22, and 0.15 in
correlation for total negative slack (TNS), worst negative slack (WNS),
and power, respectively.

I. INTRODUCTION

In modern VLSI design flows, the register-transfer level (RTL)
stage is a critical point, where designers devote significant effort to
crafting precise design behavior descriptions using hardware descrip-
tion languages (HDLs) such as Verilog, VHDL, and Chisel [1]. At this
early stage, design engineers face a vast design space with maximum
flexibility, allowing them to make virtually any fine-grained design
decisions that will affect the ultimate quality of the ASIC design
in terms of power, performance, and area (PPA). Ideally, designers
should optimize their RTL designs sufficiently at this stage, since it
is extremely challenging, if not impossible, to remedy low-quality
RTL in downstream synthesis stages.

Despite the critical importance of optimizing RTL designs, it is
very difficult to evaluate the RTL design quality, considering an
RTL design is still in the format of HDL code. In a standard
VLSI design flow, designers have to go through the time-consuming
subsequent synthesis or even layout stages, relying on full-fledged
commercial electronic design automation (EDA) tools to evaluate the
design quality based on netlists or layouts. For complex industrial
designs, the logic synthesis could take more than one day and the
layout process can easily further take several days. To make things
worse, designers often need to frequently invoke synthesis tools to
implement and evaluate their RTL designs, optimize the RTL code
based on the results, and then repeat the evaluation process until
optimization is complete. This iterative process significantly prolongs
the total turnaround time and hinders the optimization of design
quality, making the RTL design process extremely inefficient.

In recent years, many customized machine learning (ML) methods
have been explored to predict design quality as early design feed-
backs [2]. However, most ML methods make predictions based on
gate-level netlists or layouts, with the earlier RTL stage receiving
less attention [2]. Existing ML solutions commonly represent gate-
level netlists as graphs and process them with graph neural networks
(GNNs), while layouts are represented as two-dimensional matrices
and processed with convolutional neural networks (CNNs). However,
since the RTL design is in HDL code format instead of common

data structures, there is no consensus on the best way to represent
and handle such RTL designs yet. Some works [3], [4] only tune
the design flow of specific designs without examining RTL details,
therefore requiring retraining the ML model for every new design.
Similarly, most RTL-stage power models [5]–[9] cannot be gener-
alized to new designs. Other works [10], [11] develop RTL-stage
timing models based on Neural Networks. However, these models
only support combinational circuits and are trained using specific
design variations generated by an RTL generator. Besides the RTL-
stage PPA modeling, which is the focus of this work, there are models
targeting even earlier architectural stages [12]–[17]. But it is even
harder for them to directly generalize to unknown new designs, due
to the lack of RTL details.

Most recently, a few more general ML methods [18], [19] are
proposed to predict design qualities at the RTL stage. They first
convert design RTL to representations such as the abstract syntax
tree (AST), and then evaluate design PPA either based on all register
trees [18] or randomly sampled paths [19] extracted from AST-
alike representations. However, their accuracy on unknown new RTL
designs is still limited for several reasons. First, the AST-alike
representation adopted in these works [18], [19] is simply the initial
data format used by traditional synthesis tools. It is not an ideal
data format to support ML solutions. As we will demonstrate in
Subsection II-A, the discrepancies of different design types are ob-
vious in AST-alike representations, limiting the model generalization
ability. Second, these works [18], [19] process the representations
with several unreasonable operations. For example, in [18], we find
notable undesired duplications among register trees when counting
the design logic. In [19], there is a significant gap between the pseudo
training paths and real paths extracted from target inference designs.
Subsection III-B provides a detailed inspection of these prior works.

In this work, we propose a new RTL-stage PPA modeling frame-
work named MasterRTL, which achieves significantly higher accu-
racy over prior works [18], [19] when applied to new RTL designs.
It is the first work that supports the cross-design RTL evaluation on
all major PPA qualities, including both total negative slack (TNS)
and worst negative slack (WNS), both vector-less and vector-based
power analysis results, and the gate area1. It primarily answers two
key unsolved questions in the RTL-stage PPA modeling problem:

Q1. What is the most appropriate data format of RTL design (i.e.
RTL representation) that best supports ML methods?

Q2. Based on the RTL representation, how to capture the key
patterns to estimate each design objective?

For question Q1, since we target a cross-design ML-based method
applicable to any RTL design, an appropriate RTL representation
should be maximally similar to the ultimate gate-level netlist, and
be as general as possible. Such a general representation will unify
different design types, thus maximizing the ML model’s accuracy on
unknown new designs. MasterRTL adopts a new bit-level design rep-
resentation named the simple operator graph (SOG), with only fun-
damental single-bit logic operations. Compared with the AST-alike
representations in prior works [18], [19], it better unifies different

1In comparison, [18] only evaluates TNS and vector-less power, [19] only
evaluates WNS, vector-less power, and area. Most other RTL-stage mod-
els [3]–[9] are not cross-design, requiring retraining on new designs.

RTL
Designs

Yosys

WNS/TNS, Power, Area

ML Models

Synthesis

Ground-Truth

EDA
Tools

Prediction

Layout

SOG Construction
…

AND NOT MUX

OR XORReg
Bit 1

Reg
Bit 2

…
Reg
Bit 𝑖

Reg
Bit 𝑁

…Bit-level
RTL

Timing Model

Path-level Delay

Design-level Timing

Node Delay

Power Model

Module Information

Design-level Power

Node Toggle Rate

Area Model

Design-level Area

Node Area

Fig. 1: MasterRTL overall workflow for RTL-stage design PPA prediction.
MasterRTL utilizes a general SOG representation to capture the design RTL,
while exploiting customized models for timing, power, and area to achieve
precise design quality prediction.

RTL design types and styles and thus enables a higher cross-design
model accuracy for almost all design objectives and ML methods.

For question Q2, since the mechanisms behind ground-truth
power, performance, and area measurement are largely different,
instead of adopting similar input features for different tasks in prior
works [18], [19], we customize different estimation methodologies
for timing, power, and area separately. Specifically, among all RTL-
stage cross-design methods, our timing model is the first to explicitly
capture the critical path and the corresponding delay between any
pair of registers. This is enabled by our SOG representation’s
consistency in register mapping with the netlist. Our power model
is also the first to integrate toggle rate information as features, thus
supporting unified predictions on both vector-based and vector-less
power values. It is also the first cross-design RTL power model that
employs module-level power evaluation, significantly augmenting
the number of power labels for training.

Our contributions in this work are summarized below:
• We propose an open-sourced new framework named MasterRTL

to efficiently evaluate all PPA values of any given design RTL2.
Evaluated on our comprehensive dataset with 90 different RTL
designs, it achieves 0.33, 0.22, and 0.15 higher absolute values
in correlation R for TNS, WNS, and power estimations, than
state-of-the-art solutions.

• We adopt a new bit-level RTL representation named SOG.
Compared to ASTs used in prior works, it is a significantly more
general representation that unifies different design types, and
reduces the gap to the ultimate gate-level netlist. It is a highly
“ML-friendly” representation that can be adopted by follow-up
ML solutions involving cross-design RTL processing tasks.

• Based on SOG, we customize algorithms for each design
objective, capturing their different mechanisms. Among cross-
design RTL-stage methods, MasterRTL is the first to capture
detailed critical-path information in timing modeling, and the
first to integrate toggle rate and module-level information in
power modeling.

• We further study the impact of different logic synthesis options
and the extra placement step on the target design PPA. We
extend MasterRTL to predict post-placement PPA values.

• Finally, we explore a new data augmentation technique that gen-
erates new pseudo RTL designs from scratch. We demonstrate
its potential in mitigating the circuit data availability problem.

II. METHODOLOGY

This section introduces our MasterRTL framework in detail. Let’s
denote an RTL design in HDL-code format as H, and the generated
gate-level netlist after synthesis as G, with its power, timing, and area
as {PG , TG , AG}. The target of our RTL modeling framework F is
to evaluate these post-synthesis qualities of any RTL design. This

2It is open-sourced in https://github.com/fangwenji/MasterRTL.git

R1 [0:2]

R2 [0:2]

ADD

C1 [0:2]

MUL

MUX
XOR

C2 [0]

3

3

3

3

3

Register Bit / DFF

RTL Operator

Constant Value

Netlist Combinational Cell

R1 [0] R1 [1] R1 [2]
C1 [1]C1 [0] C1 [2]

R2 [0] R2 [1] R2 [2]

C2 [0]
NOTXOR

MUX MUX
MUX

ORAND
AND

…

DFF1 DFF2 DFF3

DFF4 DFF5 DFF6

MUX MUX MUX

FA

NAND XNOR
AND

INV
…

(a) AST-alike (b) SOG (c) Netlist

Register Bus

Fig. 2: Comparison between different RTL representations and the target gate-
level netlist. (a) Abstract syntax tree (AST)-alike RTL representations with
each node denoting word-level design operations, adopted in prior works [18],
[19]. (b) Our adopted bit-level RTL representation named simple operator
graph (SOG). With only 5 operator types, it proves to be significantly more
general across different designs and more similar to the target gate-level
netlist. (c) The ultimate target gate-level netlist after logic synthesis. Registers
exhibit 1-to-1 matching between SOG and netlist.

framework first converts HDL-code format H to a representation R,
allowing the processing of RTL details. Then different power, timing,
and area models {fp, ft, fa} will be developed separately. The target
can be summarized as below.

F (H) = {fp(R), ft(R), fa(R)} → {PG , TG , AG} (1)

In this section, we will first introduce the new RTL representation
R named SOG adopted by MasterRTL, together with a preview of
experimental results demonstrating its advantages. Based on this new
representation R, we will introduce the new timing, power, and area
models proposed in MasterRTL.

A. SOG: Our Suggested Bit-Level RTL Representation

The RTL-stage PPA modeling starts with converting the raw HDL
code H to a reasonable data structure, named design representation
R, to enable the processing of detailed RTL design information. A
major challenge in this task is how to bridge the huge gap between
the RTL-stage representation and the post-synthesis gate-level netlist,
without invoking the time-consuming logic synthesis engine. Prior
works [18], [19] directly convert the HDL code to an AST-alike
representation. As Fig. 2(a) shows, this AST-alike representation can
be viewed as a directed graph, with each node being a word-level
design operation with any bit width. These operations may include
adders, subtractors, multipliers, shifters, comparators, multiplexers,
registers, and other logic operators [19]. Altogether there are 18
different word-level operations with any legitimate bit width in such
AST-alike representation. Fig. 2(c) shows the target gate-level netlist
after synthesizing this RTL example.

In comparison, MasterRTL adopts a new bit-level RTL repre-
sentation without involving time-consuming optimizations in the
existing synthesis process. It is shown in Fig. 2(b). Compared with
18 different word-level operations in AST-alike representation, this
new bit-level representation R consists of only single-bit registers
and 5 types of single-bit primary simple logic operations, including
two-input AND, two-input OR, two-input XOR, NOT, 2-to-1 MUX.
Therefore, we name it simple operator graph (SOG). This new bit-
level RTL representation SOG is generated by breaking each multi-
bit word into logic bits and replacing the word-level operations with
corresponding Boolean relations over these bits, following a pre-set
mapping relation. The generation of this SOG representation can be
implemented based on open-source tools like Yosys [20] and finishes
in a short time.

In this subsection, we inspect the advantage of SOG for ML pre-
dictions, compared with AST-alike representation in prior works [18],
[19]. We observe two potential advantages of SOG as follows.

Area Estimation Accuracy
SOG AST-alike

(bit-level) (word-level)

Simple correlation of all designs R = 0.976 R = 0.862

(a) Evaluation of similarity between RTL representations and netlist.

Area Estimation Accuracy SOG AST-alike
Training data Test data (bit-level) (word-level)

Random Other Random R = 0.98 R = 0.94

CPUs Non-CPU designs R = 0.97 R = 0.21

Large designs Small designs R = 0.94 R = 0.15

(b) Evaluation of the generalization ability of RTL representations.

TABLE I: Comparison between SOG (with bit-level operators) and AST-
alike representations (with word-level operators) using the straightforward area
prediction task. (a) The average area correlation between RTL representation
and gate-level netlist. SOG gives obviously better correlation, indicating a
significantly better similarity with netlist. (b) Area prediction test accuracy
when using different training/testing designs. Only SOG remains accurate for
all three scenarios, implying a significantly more general representation.

1) Similarity: SOG is more similar to the target gate-level netlist
after logic synthesis. It reduces the gap between pre-synthesis
RTL and post-synthesis gate-level netlist.

2) Generalization: By only adopting 5 simple single-bit logic
operations, SOG is more general than the AST, reducing the
difference among various RTL design types and styles.

To support these two claims, we provide a preview of our experi-
ment results in Table I, which compares the area prediction accuracy
based on two different representations R. It is based on our dataset
with 90 different designs. Here we present the area prediction task
considering its simplicity. The trend is similar in power and timing
predictions shown by full experimental results in Section III-C.

Table I(a) shows a higher similarity between the SOG represen-
tation and the netlist. It simply measures the Pearson correlation
R between extracted features from each RTL representation and
the gate area of netlist as ground-truth, without any explicit ML
model. Extracted features for each representation are the numbers
of node operations in each design. There are 6 features for SOG and
18 features for AST-alike representation. Despite a smaller number
of features, SOG correlates much better with netlists, according to
Table I(a). Such a better correlation implies there is a higher similarity
between SOG and the netlist.

Table I(b) implies that SOG is a more general representation.
It reports the test accuracies of our proposed simple area model,
which will be introduced in subsequent sections. When we randomly
assign the 90 designs to the training and testing dataset, as Table I(b)
shows, the model based on SOG is slightly better than the AST-alike
representation, again reflecting SOG’s better similarity with netlist.
However, when we use distinct types of designs for training and
testing (e.g., train on CPU/large designs while test on non-CPU/small
designs), the accuracy of models using AST-alike representation
immediately degrades from R = 0.94 to R = 0.21/0.15. In compari-
son, ML models based on SOG remain accurate with R = 0.97/0.94.
These results imply that SOG is a more general representation that
unifies different designs in training and testing datasets.

Besides the above two advantages in similarity and generalization,
there is a third key advantage of SOG named consistency that enables
the development of our new customized models in MasterRTL:

3) Consistency in register mapping: As Fig. 2 shows, every register
cell in gate-level netlist G has a 1-to-1 mapping to the single-bit
register operator in SOG R. In comparison, the AST with word-
level nodes can never directly map to netlists in prior works.

Supported by the consistency in 1-to-1 register mapping, our signifi-
cantly more accurate and detailed timing model can directly explore
critical paths on SOG, then map to paths of the same starting and

end registers on netlist. In the next subsections, we will separately
introduce our timing model, power model, and area model in detail.

B. RTL-Stage Timing Modeling
For the RTL-stage timing modeling, as Fig. 3 shows, we propose

a multi-stage ML framework to evaluate both the TNS and WNS
of any RTL design. The target ground-truth timing information
including TNS and WNS values are from the post-synthesis timing
report. Please notice that detailed timing evaluation at such an early
stage is highly challenging, since neither logic optimization nor
technology mapping has been performed yet. Therefore, different
from previous netlist- or layout-stage timing modeling methods [21]–
[23], our modeling method will primarily focus on key patterns and
use some approximations. While it may result in imperfections, they
will be addressed by subsequent calibration using ML models.

For RTL-stage timing modeling, a key challenge is that the ground-
truth label is based on the timing analysis on gate-level netlist G. Such
netlist-level timing values cannot be directly mapped to the AST-alike
RTL representation R. Therefore, state-of-the-art works either give
up modeling RTL details [18] or only use synthesized pseudo paths as
training data [19], leading to significant inaccuracies. In comparison,
MasterRTL utilizes the consistency of registers between the new
SOG representation R and netlist G. Specifically, we will capture
the slowest critical paths in both SOG representation R and netlist
G, and map these paths one-by-one according to their starting and
end registers cell/operator. This multi-stage timing modeling process
is introduced in detail below.

1 Node-delay modeling in R. We first develop a simple approx-
imated analytical (non ML-based) model to evaluate the delay after
each node on our RTL representation R in SOG. Please notice that
such ‘node-delay’ on R is not intended to be a real delay value.
Instead, we only use it to guide path extraction on R for feature
collection. This node-delay model is a linear function of the fan-out
number, with coefficients determined by the type of the driving node
operator. Specifically, for each type of node operator, its coefficients
are approximated by the RC values of standard cells of the same type
in the liberty file (e.g., .lib/.db).

2 Critical path identification and mapping in R and G. Based
on the estimated node-level delay in R, we will efficiently propagate
such estimated node-level delay by traversing the SOG graph in
topological order, in order to estimate the maximum-delay path PR

i→j

between any pair of registers i → j in the representation R, with
the ith register as the startpoint and j th register as the endpoint. For
a design with N registers, i, j ∈ [1, N].

Based on the captured PR
i→j from RTL representation R, the goal

is to evaluate ground-truth maximum path delay between the same
pair of registers in the gate-level netlist G. Denote the target critical
path between register i and j in the netlist as PG

i→j . Its path delay
is collected using post-synthesis timing analysis EDA tools.

Notice that both critical paths PR
i→j and PG

i→j share the same
startpoint and endpoint registers {i, j}, but the actual nodes on each
path are different. A mapping example is shown in Fig. 3, where
a node in PR

i→j represents an RTL operator, while a node in PG
i→j

represents a standard cell.
3 Path-level delay model training. Based on features from the

RTL-stage path PR
i→j , we train a path-level model f path

t to estimate
the ground-truth path delay label at netlist PG

i→j .

f path
t (PR

i→j) → The path delay of PG
i→j (2)

To build the training dataset, for each design, we identify the register
pairs {i, j} that lead to the top 1% maximum-delay netlist paths
PG
i→j , according to the post-synthesis timing report.
For this path-level model f path

t , we explored two types of ML
models. The first is the popular transformer model adopted in large
language models (LLMs) nowadays, processing each path as a se-
quence of nodes. This transformer model is similar to the one adopted
in [19]. But due to its limitation of using individual pseudo training
paths, [19] has no fan-out/degree information in features, which are

RTL

Designs
SOG

Construction

❸ Path Models Training

Transformer

Tree-based

WNS/TNS

EDA Tools

Ground-Truth

Prediction

Graph
Feature

Tree-based

❺ Design-level
Calibration

• Critical Paths
• 𝐓𝐍𝐒𝑹,𝐖𝐍𝐒𝑹

❶ Analytical
Node Delay

❹ SOG Delay Propagation + Path Model Inference

Ri1 O1 Ri2 O2 O3 Rj1 Rj2 𝑃∗→$%

❷ Critical Path Identification & Mapping

Ri RjG2G1(b) Netlist
𝑃&→$'

Ri O1 O2 O3 Rj(a) SOG
𝑃&→$%

Source
Matching

Sink
Matching

Timing
Modeling

Fig. 3: Timing evaluation flow in MasterRTL. The timing models capture all critical paths at RTL stage, enabling accurate timing estimation.

critical for path delay prediction. In comparison, we incorporate the
fan-out count of each node (i.e., number of child nodes) in the path
PR
i→j into the input features. The second explored ML model type for

f path
t is the traditional tree-based algorithms like Random Forest [24]

with careful feature engineering. The features captured from the path
PR
i→j include: 1) the total number of all operations; 2) the number of

each type of operation; 3) the accumulated node delay on this path
according to the model in 1 .

4 Path-level delay model inference. After training the path-delay
model f path

t , it will be applied for TNS/WNS prediction on any given
new RTL design. Similar to the calculation process of TNS and WNS
in netlists, in the representation R, we capture the critical path of each
register as the endpoint. Using the technique in 2 , we propagate
the estimated node delays by traversing the SOG. Consequently, we
identify altogether N paths, with each path denoted as PR

∗→j (j ∈
[1, N]). Here ∗ represents the startpoint register that leads to the
maximum path delay.

Then the trained path-level model predicts the path delay of all
N paths PR

∗→j . According to the definition of TNS and WNS, their
estimations in the representation R are calculated below.

TNSR =

N∑
j=1

(clk − f path
t (PR

∗→j))

WNSR = min
j∈[1,N]

(clk − f path
t (PR

∗→j))

5 Design-level TNS/WNS calibration. Given that RTL-stage
timing modeling is highly challenging, the estimated path delays,
WNSR, and TNSR predicted directly by the path-level model in
4 are not sufficiently accurate. But they provide useful information

for further calibration. In Fig. 4, we compare the slack distribution

(a) Small Designs (b) Medium Designs (c) Large Designs

Fig. 4: The path delay distribution of the worst 1% critical paths from both
netlist (DC) and our path-level model. Although their distributions are not
exactly the same, there are obvious patterns depending on the design size.

of the worst 1% of the N critical paths from both our path-level
model prediction clk − f path

t (PR
∗→j) and ground-truth gate-level

netlist timing report. We observe several interesting and reasonable
patterns in Fig. 4:

• The distribution of critical paths (red) from netlists is more
concentrated than the path-level model predictions (blue).

• While there are discrepancies between the ground-truth and
path-level predictions, clear patterns exist based on design size.
Specifically, predictions on small-scale designs tend to be over-
pessimistic, large-scale ones are over-optimistic, and medium-
sized designs fall in the middle.

These discrepancy patterns are actually expected. They primarily
attributed to the optimization efforts carried out during logic synthe-
sis, specifically targeting the most critical paths. Such optimization
efforts make slacks of the 1% critical paths in netlist G more
concentrated and closer to actual WNS. Also, the impact of these
optimization efforts is more obvious in small designs with fewer
paths, making the path-level predictions based on R over-pessimistic
by comparison, and vice versa.

Leveraging these valuable patterns, we further devote one addi-
tional final-stage model to calibrate the above evaluations TNSR

and WNSR towards the actual TNS and WNS labels measured in
gate-level netlist G. It adopts a tree-based ML model, with features
including: 1) the SOG features (i.e., the numbers of node operators)
indicating the design scale; 2) the estimated TNSR and WNSR

provided by the path-level model; 3) the slack distribution of the
worst 1% of the N critical paths based on path-level model prediction
clk − f path

t (PR
∗→j). For each design, we take the worst, 10%, 50%,

and 90% percentile of the predicted slacks as features.

C. RTL-Stage Power Modeling
For RTL-stage power modeling, we propose a new toggle-rate-

based and module-level method. Different from prior works [18],
[19], this is the first cross-design RTL-stage power model to utilize
toggle rate as input. It annotates a toggle rate on every node of the
SOG representation R. Such toggle rate annotation supports both
vector-based and vector-less power simulation scenarios. For vector-
based power analysis, we perform RTL simulations to obtain accurate
toggle rates. It captures the dynamic behavior of the design, enabling
precise estimation of toggle rates. For vector-less power analysis, we
extract toggle rates from logic synthesis tools before the beginning
of the synthesis process. It generates the necessary information about
the design’s toggling behavior without explicit workload simulation.

Node toggle rate propagation. The toggle rate information of all
register bits in RTL can be obtained from the Switching Activity
Interchange Format (SAIF) files from EDA tools for both vector-
based and vector-less analysis. Then the toggle rate of all registers
can be directly mapped to the register nodes on SOG. Starting from
registers, we can efficiently propagate the toggle rate to every node
on SOG R by traversing the graph, according to the functionality of
each simple operator type in SOG [25].

Module-level power estimation. A major challenge in design
power prediction is the lack of training data, since each design

only provides one data sample (i.e., its total power) for training.
Therefore, instead of directly predicting the total power of an entire
design, we break the design down into M modules based on the RTL
hierarchy of HDL code3. This module-level method greatly enriches
the total amount of power data by M times. We predict the power
of each module-level partition, denoted as PowerG1, PowerG2,
..., PowerGM . The overall power of the design, PowerG , is then
obtained by summing the power of each module-level partition:
PowerG =

∑M
i=1 ki ·PowerGi, where ki ∈ Z+ refers to the number

of times the ith module is instantiated.
For this module-level power prediction, we explored two types

of models: graph neural network (GNN) model and traditional
tree-based models. The total power is estimated by the sum of
dynamic and static power. In terms of dynamic power, which is
closely related to toggle rate, the explored models are introduced
below. For the GNN model, we exploited the sub-SOG converted
from modules as the input of the model. The features of each node
are: 1) number of fan-in and fan-out; 2) one-hot encoding of the 6
node type; 3) propagated toggle rate. As for the tree-based method,
for each module, we perform feature engineering based on toggle
rate information: 1) the sum of toggle rate, 2) average toggle rates,
3) the sum of fan-out number multiples toggle rate on each node,
4) the total number of nodes. For static power estimation, it is
toggle-rate irrelevant and only accounts for a small proportion of
the total power, thus only the SOG-related features are utilized.

Design-level power calibration. Similar to the timing model, to
capture the impact of different optimizations on distinct scales of de-
signs during logic synthesis, we also add a final-stage tree-based ML
model to calibrate the power prediction based on the sum of power
prediction on all modules. In addition to this estimated total power,
we incorporate the SOG graph features indicating the design scale.
This final-stage calibration model further improves the accuracy.

D. RTL-Stage Area Modeling
According to our observation, area modeling is much more

straightforward than the aforementioned timing and power modeling.
Based on the SOG representation, a one-stage tree-based model is
sufficient to provide high accuracy. The total gate area is decomposed
into the area of sequential and combinational cells. To predict the
sequential area, we simply multiply the total number of registers in
SOG with the cell area of a D-flip-flop in the liberty file. It provides
accurate results, eliminating the need for further ML models. For the
combinational part, we calculate the area of all operators in SOG
using the liberty file, which is then combined with the previously
mentioned SOG features to create a comprehensive feature vector.
Based on the features, the tree-based model is further utilized for
combinational area estimation.

E. Data Augmentation by Generating New RTL
In real-world application scenarios, high-quality RTL designs are

extremely important intellectual property (IP) of IC design companies
and are hardly available to model developers. Therefore, it is very
likely to encounter a shortage of diverse variants of RTL designs for
model training. To address this data availability challenge, we present
a new RTL data generation method. We intend to develop this further
with more customizations on RTL format in our future work, but here
we provide a brief description of how this can already be realized
using the existing graph generation models.

Our current solution generates brand-new RTL designs based on
a graph generative method [26] followed by a fine-tuning algorithm.
Specifically, we first convert a small number of available training
RTL designs to the RTL representation4 in graph format, then train
the graph generation model [26] with it. Then the graph generation

3Specifically, we partition modules by considering only one level below the
top module in this work.

4In this RTL generation task, we adopt AST-alike representation to train the
graph generation model. As we discussed, SOG is closer to the gate-level
netlist, while AST-alike representation is more similar to RTL.

model generates brand-new graphs. After that, the node type and
connectivity in generated graphs will be fined-tuned to enforce
our pre-defined RTL constraints (e.g., legitimate fan-in number, the
proportion of each operator type, bit-width, etc.). Finally, the fine-
tuned graphs can be converted back to newly generated RTLs as new
training data for data augmentation.

Currently, this RTL-stage data generation method is helpful when
the available real RTL data is very limited, with its effect demon-
strated in the Subsection IV-C. Considering the scaling-up trend of
ML models, the serious data availability problem will become a
key bottleneck in RTL modeling. Therefore, we believe this RTL
generation method is highly promising, since it can generate an
almost unlimited number of new RTL designs. In future work, we
will try to remove the reliance on the extra fine-tuning algorithm and
further improve the similarity between generated RTL designs and
real ones.

III. EXPERIMENTAL RESULTS

A. Experimental Setup and MasterRTL Implementation

In this work, we first construct a comprehensive dataset by collect-
ing altogether 90 different open-source RTL designs from different
benchmark sources. Such a comprehensive dataset enables a more
thorough examination of our proposed methodology.

Table II summarizes the sources of all designs we adopted in
the dataset. They are originally coded with all mainstream HDLs,
including Verilog, VHDL, Chisel [1], and SpinalHDL [27]. These
designs target different applications, including CPU cores [28], [29],
ML accelerators [29], vector arithmetic, cryptographic arithmetic, and
other designs for logic synthesis study [30].

Source Number of Original Design Size (#K Gates)
Benchmarks Designs HDL Type {Min, Median, Max}

ISCAS’89 [30]† 5 Verilog {1, 6, 7}
ITC’99 [31]† 13 VHDL {4, 10, 45}

OpenCores [32]† 15 Verilog {2, 7, 62}
VexRiscv [28] 26 SpinalHDL {7, 132, 530}

RISC-V Cores⋆ 5 Verilog {7, 10, 17}
NVDLA [33] 8 Verilog {6, 40, 672}

Chipyard [29]‡ 18 Chisel {1, 25, 921}
† Tiny designs (i.e., < 1K Gates) are removed from the original benchmarks.
⋆ Collected open-source RISC-V cores [34], [35] and their variants.
‡ Rocket, BOOM and Sodor cores with different configurations.

TABLE II: Design RTL used for dataset generation. The comprehensive
dataset encompasses diverse sources targeting various application scenarios,
depicted in different HDL formats.

For each design, the RTL is synthesized with Synopsys Design
Compiler® 2021 using the NanGate 45nm technology library [36].
The PPA values of the gate-level netlist of each design are recorded
as the ground-truth label. Notice that we explored different synthesis
parameters in Design Compiler®. The label for each RTL design is
determined based on the best PPA point on the Pareto curve, repre-
senting the best design trade-off designers may achieve. Actually, un-
like described in some prior works [18], the design trade-offs are not
obvious using the latest commercial synthesis options, and we give
a more detailed discussion in Subsection IV-B. The bit-level SOG
representation is generated with open-source tools such as Yosys [20]
and Pyverilog [37]. The experiments are conducted on a server with
a 2.9 GHz Intel Xeon(R) Platinum 8375C CPU, and 256G RAM.

Based on the constructed dataset, the ML models can be imple-
mented and evaluated. We adopt 10-fold cross-validation to assess the
model accuracies. The hyper-parameter tuning for each ML model is
based on a held-out validation set. After exploration and parameter
tuning, our detailed model implementation is introduced below.

1) Timing Models: As mentioned in Section II, we explored two
types of timing models for path delay prediction, as listed below.

• Transformer: The transformer model shares the same hyperpa-
rameters as described in [19] while we additionally introduce
the fan-out of the operators into the path sequence.

• Random Forest: With the features listed above, we exploited
the Random Forest model [38] with 80 estimation trees and a
maximum depth of 20 to perform the regression.

For the final design-level calibration model, we employed the
XGBoost model with 45 estimators and a maximum depth of 8.

2) Power Models: During the module-level power estimation, we
explored and evaluated two different types of ML models:

• Graph Neural Network: we implemented a Graph Convolutional
Network (GCN) [39] with two hidden convolutional layers with
10 and 70 nodes, respectively, and one sum-pooling layer.
It performs an end-to-end graph-level value regression. We
utilized the Adam optimizer with a learning rate 0.01 for model
optimization, and the GCN model converges in 100 epochs.

• XGBoost Regressor: With the features listed above, an XGBoost
model [40] with 30 estimators and a maximum depth of 6 is used
for the regression task.

An additional XGBoost model with 45 estimators and 8 max depths
is utilized for design-level power calibration.

Due to the unavailability of power simulation testbenches for
many designs, we demonstrate the vector-based power prediction
capability of MasterRTL through the RISC-V CPU core series named
BOOM [29], which can be simulated with widely-adopted Dhrystone
testbench [41] to obtain vector-based ground-truth power. All power
models in this experiment are trained with vector-less power values.
Unless explicitly indicated, the power prediction accuracy is also
evaluated with vector-less power.

3) Area Model: Similar to the design-level timing and power
model, the XGBoost regressor with 45 estimators and 12 max depth
is evaluated for the combinational area prediction. The total area is
predicted by adding the predicted combinational area with the directly
calculated sequential area.

We use three metrics to evaluate the prediction accuracy between
the predicted value ŷ and ground-truth y of n = 90 designs. They are:
correlation coefficient (R), Mean Absolute Error Percentage (MAPE),
and Root Relative Square Error (RRSE), as defined below.

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

× 100%5, RRSE =

√∑n
i=1 (yi − ¯̂yi)

2∑n
i=1 (yi − ȳ)2

The ¯̂y and ȳ represent the average of predicted and measured values,
respectively. These metrics bring a comprehensive and fair evaluation
of ML models from three aspects, where the higher correlation R and
lower MAPE and RRSE indicate better accuracy.

Random Forest (Path-level)
Transformer (Path-level)

XGBoost (Module-level)
GCN (Module-level)

0.19

0.64
0.48

0.87 0.78 0.73

0

0.5

1

WNS TNS Power

co
rr

el
at

io
n

co
ef

fic
ie

nt
 R

Fig. 5: Evaluation of intermediate-stage ML models in MasterRTL. Tree-
based models are more accurate in path-level timing and module-level power
modeling, outperforming deep learning models (i.e., Transformer and GCN).

Fig 5 compares these explored intermediate-stage ML models
in MasterRTL, and the final prediction results will be introduced
later in Subsection III-C. For path-level timing models, the Random
Forest model with human-extracted path features performs better
than Transformer. The trend is similar in the module-level models,
where the XGBoost regressor is more accurate than the GCN model.

5To mitigate the influence of a few extreme outliers, MAPE values exceeding
100% are capped at 100% to prevent disproportionate impact on the metric.

Therefore, the traditional tree-based model is finally adopted at the
intermediate stages of MasterRTL instead of deep learning models.

B. Baseline Solutions and their Limitations
As mentioned, [18], [19] are obviously state-of-the-art cross-

design RTL modeling methods, which should be compared with our
solution. The implementation of [19] is open-sourced. Although [18]
is not open-sourced, by strictly following their description, we can
implement their solution without much doubt. Neither works [18],
[19] released their dataset. For a fair comparison, both baselines and
MasterRTL are trained and evaluated on exactly the same training
and testing data, with 10-fold cross-validation (i.e., each time 90%
designs for training, 10% for testing, no design trained and tested at
the same time). Before we delve into the experimental results, we
will first inspect these solutions [18], [19] in detail, and discuss their
potential limitations, which lead to inferior performance.

The work of [18] first backtraces every register to build the
logic tree driving this register, named a register tree. After that, it
calculates pre-defined features for each register tree and sums up the
features of all register trees, generating the final ML model inputs.
However, we observe significant logic overlaps among different
register trees, resulting in the same RTL logic being counted multiple
times as undesired duplications. As our experiment in Fig. 6(a)
shows, the accuracies on power and TNS both increase when such
an overlap is removed.

0.42

0.630.61
0.74

0

0.5

1

Power TNS

co
rr

el
at

io
n

co
ef

fic
ie

nt
 R

[17] W/o overlap

(a) Influence of overlaps in [18]

-1.8 -1.5 -1.2 -1.0 -0.8 -0.5 -0.2 0.0 0.2
Path Slack (ns)

Pseudo Path Ground-Truth Slack
Real Design Ground-Truth Slack
Real Design Predicted Slack (R < 0.4)

(b) Slack distribution gaps in [19]

Fig. 6: Limitations of prior works. (a) Overlapping logic among different
register trees in [18] negatively affects accuracy. (b) In [19], the distinct
distributions between training paths and target designs result in inaccuracies
when predicting path slack.

The work of [19] trains ML models to predict the PPA of each
individual path. To generate the training dataset, it generates pseudo
individual RTL paths, and then synthesizes them to collect the PPA
label of each pseudo path. After training, the ML model is applied
to infer paths sampled randomly from the target design. However,
as shown in Fig. 6(b), we observe a significant gap between the
pseudo training paths and real test paths from realistic target designs.
These distinct distributions imply that the slack predictions (green)
are misled by the pseudo paths (red), resulting in a large gap between
predictions and real test paths (blue) in both absolute error and
correlation R. In addition, the randomly sampled paths cannot fully
reflect the TNS and WNS of the target design.

In the experimental results, we will emphasize and primarily
compare with their originally proposed methods [18], [19]. Besides
that, we have also implemented many baseline variations for detailed
ablation studies. For all setups and variations, we have tried to max-
imize the performance through the similar model-tuning procedure.

C. PPA Estimation Accuracy Evaluation and Comparison
Table III shows the comparison of MasterRTL over prior

works [18], [19]. Notice that only the colored cells with bold texts de-
note actual estimation methods, while other cells are implemented for
ablation studies. As we have explained, prior works adopt AST-alike
representations while MasterRTL uses the SOG. [18] originally only
predicted TNS and power, while [19] was for WNS, power and area.

We have multiple interesting observations in Table III. First of
all, MasterRTL significantly outperforms original prior works for all

Method Target R MAPE RRSE Target R MAPE RRSE Target R MAPE RRSE Target R MAPE RRSE

[18] (AST-alike)

WNS

0.37 26% 0.95

TNS

0.63 48% 0.79

Total
Power

0.42 51% 1.01

Area

0.75 38% 0.68
[18] (SOG) 0.82 24% 0.53 0.86 41% 0.36 0.62 48% 0.79 0.94 31% 0.33

[19] (AST-alike) 0.71 35% 1.15 0.78 36% 1.1 0.74 68% 0.81 0.93 38% 0.42
[19] (SOG) 0.78 26% 0.78 0.8 29% 0.88 0.82 48% 0.62 0.96 35% 0.4

MasterRTL (AST-alike) 0.81 22% 0.6 0.95 36% 0.31 0.79 44% 0.63 0.94 31% 0.34
MasterRTL (SOG) 0.93 14% 0.4 0.96 27% 0.29 0.89 38% 0.54 0.98 16% 0.24

TABLE III: Accuracy comparison for WNS, TNS, total power and area evaluations. Colored rows represent originally proposed methods. The prior work
ICCAD’22 [18] only proposes to evaluate TNS and power, and ISCA’22 [19] proposes to evaluate WNS, power and area.

-1.6 -1.2 -0.8 -0.4 0.0
Measured WNS (ns)

-1.6

-1.2

-0.8

-0.4

0.0

Pr
ed

ic
te

d
W

N
S

(n
s) [18] (R=0.71, MAPE=35%)

MasterRTL (R=0.93, MAPE=14%)

105 104 103 102 101

Measured TNS (ns)

105

104

103

102

101

100
0

Pr
ed

ic
te

d
T

N
S

(n
s) [17] (R=0.63, MAPE=48%)

MasterRTL (R=0.96, MAPE=27%)

10 1 100 101 102 103 104

Measured Power (mW)
10 1
100
101
102
103
104
105
106

Pr
ed

ic
te

d
Po

w
er

 (m
W

)

[17] (R=0.42, MAPE=51%)
[18] (R=0.74, MAPE=68%)
MasterRTL (R=0.89, MAPE=38%)

10 3 10 2 10 1 100

Measured Area (mm2)

10 3

10 2

10 1

100

101

Pr
ed

ic
te

d
A

re
a

(m
m

2)

[18] (R=0.93, MAPE=38%)
MasterRTL (R=0.98, MAPE=16%)

Fig. 7: Prediction vs ground-truth for each PPA characteristic of all designs. Comparing with the SOTA solutions [18], [19], MasterRTL significantly
outperforms prior works in all PPA predictions.

originally proposed estimations, specifically, WNS (R = 0.93 >
0.71 [19]), TNS (R = 0.96 > 0.63 [18]), power (R = 0.89 >
0.42 [18] and 0.74 [19]), area (R = 0.98 > 0.93 [19]), and also
much lower MAPE and RRSE errors. Another key observation is that
the advantage of our proposed SOG over AST-alike representation is
not limited to MasterRTL. All methods using SOG generally perform
better. The advantage is more obvious for [18], while less obvious
for [19]. This universal accuracy improvement validates our claimed
advantages of SOG, which we believe should be more widely adopted
as a highly ML-friendly RTL representation.

In addition, compared with the TNS and area, which are more
correlated with each design’s scale, the WNS and power estimations
are generally more challenging and less accurate. The advantage of
SOG over AST-alike is also more obvious for these challenging tasks.
More detailed comparisons of the colored cells in Table III are shown
by the scatter plots in Fig. 7.

Table IV further shows the vector-based power prediction on
BOOM series CPU designs, which support simulation based on
testbenches like Dhrystone. Table IV indicates by adopting toggle
rate in power model features, MasterRTL trained with vector-less
power values only can directly predict vector-based power accurately.
This power model unifies both vector-less and vector-based power
analysis scenarios.

D. PPA Estimation Accuracy Ablation Study
To analyze the superior performance of MasterRTL, we decompose

our solution to provide ablation studies by removing key policies of
MasterRTL. The following summarizes the crucial policies in Mas-
terRTL: 1) SOG rather than AST-alike representation; 2) customized
key features for WNS, TNS, and power, respectively (e.g. critical

Design
MAPE (%)

Vector-less Method Vector-based Method
[18] [19] MasterRTL MasterRTL

SmallBOOM 84 59 42 34
MediumBOOM 74 50 21 5

LargeBOOM 67 58 39 8

Aver. MAPE (BOOM) 75 56 34 16
Aver. MAPE (All designs) 51 68 38 N/A

TABLE IV: Comparison between the MasterRTL vector-less and vector
power prediction results. Trained on vector-less power values, MasterRTL
performs well for vector-based power prediction.

path information from path-level model for timing, the introduction
of toggle rate and module-level partition for power); 3) design-level
calibration.

Remove Path-level Model (Timing)

0.93 0.96 0.890.86 0.95 0.840.81
0.94

0.790.77
0.91

0.71

0.37
0.63

0.42

0

0.5

1

WNS TNS Power

co
rr

el
at

io
n

co
ef

fic
ie

nt
 R

Remove Module-level Model (Power)

Remove Final Calibration (Timing)

Remove SOG RepresentationMasterRTL Baseline [17]

Remove Toggle Rate Information (Power)

Fig. 8: Ablation study of decomposed factors contributing to the PPA
estimation accuracy. Except for the SOG representation used in all models,
the inclusion of customized key features is crucial for accuracy enhancement.

Fig. 8 shows ablation study results. For WNS prediction, which
heavily relies on critical path information, removing the path-level
model leads to the most substantial accuracy drop. Regarding TNS,
the most significant accuracy drop happens when graph features are
removed, indicating the importance of SOG features and design scale.
For the total power, the toggle rate information is crucial to the
accuracy. After removing all the proposed crucial policies, the final
accuracy is similar to the baseline method [18].

E. MasterRTL Runtime Overhead
MasterRTL, functioning as an RTL-stage estimator, offers accurate

PPA evaluation without a time-consuming logic synthesis process. To
evaluate its efficiency, we present the median runtime of all 90 bench-
mark designs. Table V compares the runtime overhead of MasterRTL
with the commercial logic synthesis tool. Our framework exhibits a
runtime overhead of approximately 5% compared to the synthesis
runtime. The primary contributor to this overhead is the preprocessing
of RTL designs, particularly the conversion from RTL designs to
SOG, which consumes 3.4% of the synthesis runtime. Additionally,
the extraction of toggle rate in synthesis tools accounts for 0.8% of the
synthesis time. The feature engineering processes, on the other hand,
typically require only seconds to extract features by traversing the
entire design SOG, accounting for no more than 0.5% of the synthesis
time. Lastly, the inference of all PPA values through our ML-based
timing, power, and area models requires less than 0.1 seconds.

-0.8 -0.4 0.0
Post-Place WNS (ns)

-1.5

-1.0

-0.5

0.0

0.5

1.0
W

N
S

(n
s)

DC Syn(R=0.94, MAPE=51%)
MasterRTL Syn(R=0.86, MAPE=50%)
MasterRTL Place(R=0.92, MAPE=27%)

-40k -30k -20k -10k 0k
Post-Place TNS (ns)

-90k

-60k

-30k

0k

30k

T
N

S
(n

s)

DC Syn(R=0.97, MAPE=62%)
MasterRTL Syn(R=0.89, MAPE=61%)
MasterRTL Place(R=0.89, MAPE=45%)

10 3 10 2 10 1 100 101

Post-Place Total Power (mW)
10 4
10 3
10 2
10 1
100
101
102
103

To
ta

l P
ow

er
 (m

W
) DC Syn(R=0.65, MAPE=86%)

MasterRTL Syn(R=0.61, MAPE=91%)
MasterRTL Place(R=0.88, MAPE=37%)

10 3 10 2 10 1 100

Post-Place Area (mm2)

10 3

10 2

10 1

100

101

102

A
re

a
(m

m
2)

DC Syn(R=1.0, MAPE=19%)
MasterRTL Syn(R=0.96, MAPE=31%)
MasterRTL Place(R=0.96, MAPE=24%)

Fig. 9: Extending MasterRTL for placement PPA prediction. The post-synthesis netlist’s ground-truth and predictions are in green and blue points, while the
red ones are the post-placement PPA prediction from extended MasterRTL. After being extended to placement PPA prediction, MasterRTL achieves similar
or even higher accuracy on placement solutions than ground-truth netlist. Notice that it still makes predictions at RTL-stage.

Stage Runtime⋆

RTL Preprocess
SOG Construction 3.4%

Toggle Rate Extraction 0.8%

ML Feature Generation
Timing Modeling 0.3%
Power Modeling 0.1%
Area Modeling 0.1%

All PPA Prediction Inference Time <0.001%
⋆ The runtime is presented as the proportion of logic synthesis runtime.

TABLE V: MasterRTL Runtime Overhead.

10 20 30 40 50 60
Total Power (mW)

-1.4k

-1.2k

-1.0k

T
N

S
(n

s)

Design: VexRiscv (15K Gates)

DC Compile
DC Compile Ultra

20 30 40 50 60
Total Power (mW)

-50k

-40k

-30k

-20k

T
N

S
(n

s)

Design: SmallBOOM (176K Gates)
DC Compile
DC Compile Ultra

Fig. 10: Trade-offs between power and performance caused by different
synthesis options. When adopting the most advanced synthesis option (i.e.,
Compile_Ultra), there is a best synthesis solution that achieves almost
both the best power and performance, without obvious trade-offs. Therefore,
this best synthesis solution point is directly adopted to generate the label.

IV. DISCUSSIONS

A. MasterRTL Extended to Layout PPA Modeling
In addition to targeting PPA labels of the post-synthesis netlist

G, MasterRTL can be readily extended to predict PPA in the layout
stage based on the same RTL designs. Here we first visualize the PPA
correlation between the post-synthesis netlist and the post-placement
solution from Innovus®, as shown by green points in Fig. 9. These
disparities primarily stem from offsets, while maintaining a high
correlation. Moreover, the physical-design EDA tools significantly
optimize the timing characteristics with the cost of a deterioration in
power consumption, meanwhile, the area remains almost unchanged.

Based on this observation, we developed one extra tree-based
model to further predict post-placement PPA. Its features are simply
from the existing MasterRTL predictions (blue points). Here we
perform RTL-stage prediction targeting post-placement, an extremely
challenging task. The final predictions, depicted as red scattered
points, indicate our framework can achieve similar or even higher
accuracy than ground-truth logic synthesis results.

B. The Impact of Trade-offs
With the advanced synthesis option from the latest commercial

tools, according to our observation, the trade-offs caused by synthesis
parameters are not obvious. We compared the two different synthesis
options (i.e., Compile_Ultra and Compile), and the synthesis
results of two design examples are shown in Fig. 10. Notably, the PPA
variance attained through the utilization of the Compile_Ultra

0.92 0.9
0.86

0.78

0.64

0.46

0.93 0.92 0.89
0.81

0.74

0.61

0.4

0.6

0.8

1

1000 500 200 100 50 20

co
rr

el
at

io
n

co
ef

fic
ie

nt
 R

#. Training Path from Benchmark Designs

W/o Generated RTL W/ Generated RTL

Fig. 11: Data augmentation with generated RTL designs in path-level timing
modeling. Models with generated RTL perform better, especially when
training paths from real RTL designs are limited.

command is significantly smaller compared to the alternative option,
and there is typically a best result in both design objectives, thus the
ground-truth label is directly used. The prior work [18] claiming the
necessity of capturing trade-offs actually adopted Compile options.

C. Utilization of Generated Pseudo RTL Designs

Finally, we evaluate the effect of generated RTL designs introduced
in Subsection II-E, when there are insufficient real RTL designs as
training data. The experiment evaluates the path slack prediction
accuracy of our proposed path-level model, a key component of the
timing model. Fig. 11 shows its accuracy as the number of training
paths from real designs decreases. Without generated paths, the
accuracy of the model drops rapidly (orange). But after augmenting
the dataset with generated new RTL, there is an improvement (blue),
and the gap is more obvious as real-design data further decreases.
Generating new RTL designs from scratch obviously has strong
practical value, and we will continue to improve the quality of
generated RTL in our future works to further enlarge the gap.

V. CONCLUSION

In this paper, we present MasterRTL, a pre-synthesis PPA esti-
mation framework for RTL designs. The proposed method adopts
a general RTL representation named simple operator graph (SOG)
and customizes multi-stage ML models for WNS, TNS, power, and
area separately. Accurate estimations are provided for both the post-
synthesis and post-placement stages. Additionally, a data augmen-
tation methodology is demonstrated to address the data availability
problem, with plans for future extensions.

VI. ACKNOWLEDGEMENT

This work is partially funded by the Hong Kong Research Grants
Council (RGC) ECS Grant 26208723, Guangdong Basic and Ap-
plied Basic Research Foundation no. 2022A1515110178, Guangzhou-
HKUST(GZ) Joint Funding Scheme no. SL2022A03J01288,
Guangzhou Basic Research Project no. SL2022A04J00615, and AC-
CESS – AI Chip Center for Emerging Smart Systems, sponsored by
InnoHK funding, Hong Kong SAR. Also, the authors thank the help
from Prof Jiang Hu and Prianka Sengupta at Texas A&M University.

REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Design Automation Conference (DAC),
2012.

[2] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J. Henkel,
“MLCAD: A survey of research in machine learning for CAD keynote
paper,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2021.

[3] Z. Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y.
Fang, J. Hu, Y. Chen, and E. C. Barboza, “FIST: A feature-importance
sampling and tree-based method for automatic design flow parameter
tuning,” in 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC). IEEE, 2020, pp. 19–25.

[4] R. Liang, J. Jung, H. Xiang, L. Reddy, A. Lvov, J. Hu, and G.-J.
Nam, “Flowtuner: A multi-stage eda flow tuner exploiting parameter
knowledge transfer,” in 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). IEEE, 2021, pp. 1–9.

[5] Z. Xie, X. Xu, M. Walker, J. Knebel, K. Palaniswamy, N. Hebert,
J. Hu, H. Yang, Y. Chen, and S. Das, “APOLLO: An automated power
modeling framework for runtime power introspection in high-volume
commercial microprocessors,” in 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2021, pp. 1–14.

[6] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang,
“PRIMAL: Power inference using machine learning,” in 56th Annual
Design Automation Conference (DAC), 2019, pp. 1–6.

[7] D. Kim, J. Zhao, J. Bachrach, and K. Asanović, “Simmani: Runtime
power modeling for arbitrary rtl with automatic signal selection,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2019, pp. 1050–1062.

[8] Z. Xie, S. Li, M. Ma, C.-C. Chang, J. Pan, Y. Chen, and J. Hu,
“DEEP: Developing extremely efficient runtime on-chip power meters,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2022, pp. 1–9.

[9] J. Yang, L. Ma, K. Zhao, Y. Cai, and T.-F. Ngai, “Early stage real-time
SoC power estimation using RTL instrumentation,” in Asia and South
Pacific Design Automation Conference (ASPDAC), 2015.

[10] D. S. Lopera, L. Servadei, V. P. Kasi, S. Prebeck, and W. Ecker, “Rtl
delay prediction using neural networks,” in 2021 IEEE Nordic Circuits
and Systems Conference (NorCAS). IEEE, 2021, pp. 1–7.

[11] D. S. Lopera and W. Ecker, “Applying gnns to timing estimation at
rtl,” in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2022, pp. 1–8.

[12] W. R. Davis, P. Franzon, L. Francisco, B. Huggins, and R. Jain, “Fast
and accurate ppa modeling with transfer learning,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–8.

[13] J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu, “McPAT-Calib:
A microarchitecture power modeling framework for modern CPUs,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[14] N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, “High-level synthesis perfor-
mance prediction using gnns: Benchmarking, modeling, and advancing,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference
(DAC), 2022, pp. 49–54.

[15] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation
delay prediction for fpga hls using graph neural networks,” in Proceed-
ings of the 39th International Conference on Computer-Aided Design
(ICCAD), 2020, pp. 1–9.

[16] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 97–108, 2014.

[17] Q. Zhang, S. Li, G. Zhou, J. Pan, C.-C. Chang, Y. Chen, and Z. Xie,
“PANDA: Architecture-level power evaluation by unifying analytical and
machine learning solutions,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2023.

[18] P. Sengupta, A. Tyagi, Y. Chen, and J. Hu, “How good is your Verilog
RTL code? a quick answer from machine learning,” in Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2022, pp. 1–9.

[19] C. Xu, C. Kjellqvist, and L. W. Wills, “SNS’s not a synthesizer: a deep-
learning-based synthesis predictor,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture (ISCA), 2022, pp.
847–859.

[20] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013, p. 97.

[21] Z. Xie, R. Liang, X. Xu, J. Hu, C.-C. Chang, J. Pan, and Y. Chen, “Pre-
placement net length and timing estimation by customized graph neural
network,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2022.

[22] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-
based pre-routing timing prediction with reduced pessimism,” in Design
Automation Conference (DAC), 2019.

[23] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference
(DAC), 2022, pp. 1207–1212.

[24] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[25] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

[26] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud,
R. Urtasun, and R. Zemel, “Efficient graph generation with graph
recurrent attention networks,” Advances in neural information processing
systems (NeurIPS), vol. 32, 2019.

[27] SpinalHDL, “Spinal hardware description language,” 2022. [Online].
Available: https://spinalhdl.github.io/SpinalDoc-RTD/master/index.html

[28] VexRiscv, “VexRiscv: A FPGA friendly 32 bit RISC-
V CPU implementation,” 2022. [Online]. Available: https:
//github.com/SpinalHDL/VexRiscv

[29] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[30] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 1989, pp. 1929–1934.

[31] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks
and first atpg results,” Design & Test of computers (ITC), 2000.

[32] C. Albrecht, “Iwls 2005 benchmarks,” in International Workshop for
Logic Synthesis (IWLS): http://www. iwls. org, 2005.

[33] Nvidia, “Nvidia deep learning accelerator,” 2018. [Online]. Available:
http://nvdla.org/primer.html

[34] YosysHQ, “Picorv32 - a size-optimized risc-v cpu,” 2019. [Online].
Available: https://github.com/YosysHQ/picorv32

[35] onchipuis, “A 32-bit risc-v processor for mriscv project,” 2017.
[Online]. Available: https://github.com/onchipuis/mriscvcore

[36] NanGate 45nm Open Cell Library, https://si2.org/open-cell-library/.
[37] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design

processing toolkit for verilog hdl,” in Applied Reconfigurable
Computing, ser. Lecture Notes in Computer Science, vol. 9040.
Springer International Publishing, Apr 2015, pp. 451–460. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16214-0 42

[38] G. Louppe, “Understanding random forests: From theory to practice,”
arXiv preprint arXiv:1407.7502, 2014.

[39] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Computational Social Networks
(Comput. Soc. Netw.), vol. 6, no. 1, pp. 1–23, 2019.

[40] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining (SIGKDD), 2016, pp. 785–794.

[41] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM (Commun. ACM), vol. 27, no. 10,
pp. 1013–1030, 1984.

https://spinalhdl.github.io/SpinalDoc-RTD/master/index.html
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
http://nvdla.org/primer.html
https://github.com/YosysHQ/picorv32
https://github.com/onchipuis/mriscvcore
http://dx.doi.org/10.1007/978-3-319-16214-0_42

