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ABSTRACT
In digital IC design, compared with post-synthesis netlists or lay-
outs, the early register-transfer level (RTL) stage offers greater
optimization flexibility for both designers and EDA tools. How-
ever, timing information is typically unavailable at this early stage.
Some recent machine learning (ML) solutions propose to predict
the total negative slack (TNS) and worst negative slack (WNS) of
an entire design at the RTL stage, but the fine-grained timing infor-
mation of individual registers remains unavailable. In this work, we
address the unique challenges of RTL timing prediction and intro-
duce our solution named RTL-Timer. To the best of our knowledge,
this is the first fine-grained general timing estimator applicable
to any given design. RTL-Timer explores multiple promising RTL
representations and proposes customized loss functions to capture
the maximum arrival time at register endpoints. RTL-Timer’s fine-
grained predictions are further applied to guide optimization in
a standard synthesis flow. The average results on unknown test
designs demonstrate a correlation above 0.89, contributing around
3% WNS and 10% TNS improvement after optimization.

1 INTRODUCTION
Performance is a primary design objective in digital integrated
circuit (IC) design. To achieve desired performance, huge engineer-
ing efforts are spent on the analysis and optimization of timing,
which describes the maximum delays of signal propagation in IC.
However, accurate static timing analysis (STA) tools require pre-
cise resistance and capacitance values as inputs, which are often
unavailable until late post-layout or sign-off stages.

However, the sign-off stage is often too late to maximally opti-
mize timing. Optimizations are generally preferred at the early stage
and high-abstraction level, when many design decisions are not
finalized yet. But such early optimization needs a good early timing
evaluation to guide it, predicting the ultimate timing in advance.
It is extremely challenging for traditional analytical STA tools [8]
to predict timing at early design stages. For a netlist, due to the
lack of wire length information, industry-standard STA tools fail
to correlate well with ground-truth timing labels from layout [16].
As for the even earlier register-transfer level (RTL), existing STA
tools do not even provide any guesses.

The RTL is a critical stage where designers define precise de-
sign behaviors with hardware description languages (HDLs) like
Verilog, VHDL, or Chisel. Compared with post-synthesis netlists
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Figure 1: Design flow with our RTL-Timer, enabling RTL-
stage timing evaluation for predictive optimizations.

or layouts, the early RTL stage enables significantly higher opti-
mization flexibility, maximally allowing designers or EDA tools to
make fine-grained design decisions. However, timing evaluation is
unavailable at this early stage and thus optimization lacks guidance.

In recent years, machine learning (ML) methods have been devel-
oped to provide early timing predictions. Explorations mostly target
the layout [1, 2, 6, 7, 9, 15] and netlist [16] stages. But the more
challenging early RTL stage is seldom explored until 2022, largely
due to its essentially higher difficulty. We summarize two unique
challenges of RTL-stage timing prediction below. They make most
post-synthesis solutions [1, 2, 6, 7, 9, 15, 16] inapplicable:

(1) Design RTL is originally in HDL code format, which cannot
be directly processed by either ML or traditional STA tools.

(2) There is no direct mapping between most RTL signals (i.e.,
model raw input) and post-synthesis cells/nets, where delay
labels are supposed to be annotated.

In this work, we tackle the above two challenges with our solu-
tion named RTL-Timer, whose position in the design flow is shown
in Fig. 1. To the best of our knowledge, this is the first general fine-
grained RTL-stage timing model that is applicable to any given new
design. In addition to overall worst negative slack (WNS) and total
negative slack (TNS), our fine-grained solution predicts the slack
information of individual sequential RTL signals. This is a highly
challenging task, but RTL-Timer is accurate enough to benefit op-
timization. We have further implemented automatic annotation of
predicted fine-grained slack information on user-provided HDL
code. We also demonstrated successful optimizations based on RTL-
Timer’s predicted fine-grained slack information.

RTL-Timer tackles the two aforementioned challenges with in-
novative techniques. 1) To handle the code format of design RTL,
RTL-Timer systematically explores various RTL representations
and proposes the ML-friendly ensemble of multiple representation
candidates. 2) To address the mismatch between RTL signals (i.e.,
model raw inputs) and cells/nets with timing labels, we utilize the
consistency in registers between RTL and netlist. It captures the
maximum arrival time at each register endpoint by sampling multi-
ple paths in its input logic. A customized loss function is developed
to enable end-to-end model training. Also, instead of directly eval-
uating the signals, RTL-Timer focuses on each bit of the signal.
Finally, the individual bits are aggregated back into the complete
RTL signal, providing a comprehensive evaluation.
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reg [7:0] R1;
wire [7:0] W1;
...
assign W1 = In1 & R1;
...
always @(posedge clk)
R1 <= W2;

...
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Figure 2: RTL representations explored in this work.
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★ This work [14] only provides one manual optimization example on a piece of
RTL code, without further detailed optimization results on a complete design.

Table 1: Existing RTL timing evaluators. The earliest ex-
ploration started in 2022. RTL-Timer is the first general
fine-grained RTL timing estimator, which is also the first
to demonstrate a positive impact in realistic optimizations.

Table 1 summarizes all existing explorations in RTL-stage timing
prediction. Many works [10–12] only accept small-scale combina-
tional designs, while some [14] cannot even be applied to unknown
new designs. They are not general solutions that can apply to any
design type. In addition, most methods [4, 10, 12, 13, 17] only target
TNS or WNS values of a whole design. Also, most works perform
prediction only, without being applied in realistic optimizations.
Our contributions are summarized below.

• To the best of our knowledge, RTL-Timer1 is the first fine-
grained general timing estimator at the early RTL stage.
It demonstrates 𝑅 = 0.89 and ranking coverage = 80% in
fine-grained slack values, and also achieves state-of-the-art
accuracy in overall design TNS and WNS predictions.

• We advance the understanding of data-driven RTL code pro-
cessing by exploring multiple promising ML-friendly repre-
sentations and an ensemble of them.

• To handle the mismatch between RTL signals and netlist
cells/nets, we propose a customized ML method to capture
the maximum arrival time of each register endpoint. Both
regression and learning-to-rank models are explored.

• Based on the fine-grained timing prediction, RTL-Timer fur-
ther predicts overall TNS and WNS, achieving state-of-the-
art 𝑅 = 0.98 and 𝑅 = 0.91, respectively.

• To demonstrate the effectiveness of RTL-Timer and its bene-
fit in early optimizations, we apply it in two unprecedented
applications: 1) We enabled automatic annotating slack pre-
diction of sequential signals in RTL code; 2) We control opti-
mization options group_path and retime during logic syn-
thesis based on predictions. Experiments show an improve-
ment up to 33.5% in TNS (avg. 9.9%) and 16.4% in WNS (avg.
3.1%) with negligible impact on power and area. This post-
synthesis improvement remains significant after the layout.

1It is open-sourced in https://github.com/hkust-zhiyao/RTL-Timer

2 PROBLEM FORMULATION
We denote an initial design HDL code (e.g., Verilog) asV , and its
post-synthesis gate-level netlist as N . Each register as the timing
path endpoint2 in the design is denoted as 𝑒𝑝𝑖 . Because of the con-
sistency between RTL sequential signals and netlist registers, 𝑒𝑝𝑖
appears in both the RTL design V and the netlist N . Our frame-
work 𝐹 will predict the post-synthesis endpoint arrival time3 (𝐴𝑇N )
and the associated ranking (𝑅𝑎𝑛𝑘N ), as formulated below:

Problem 1 (Register arrival time value prediction).

∀𝑒𝑝𝑖 ∈ V, 𝐹𝐴𝑇 (𝑒𝑝𝑖 ) → 𝐴𝑇N (𝑒𝑝𝑖 ) (1)

Note that accurate arrival time prediction at the RTL stage is
extremely challenging — even robust regression models may lead to
significant ranking variances. Therefore, we strategically reframe
the above as a ranking problem:

Problem 2 (Register arrival time ranking prediction).

∀𝑒𝑝𝑖 ∈ V, 𝐹𝑅𝑎𝑛𝑘 (𝑒𝑝𝑖 ) → 𝑅𝑎𝑛𝑘N (𝑒𝑝𝑖 ) (2)

3 METHODOLOGY
3.1 Universal ML-friendly RTL Representation
The first challenge in RTL prediction is that the initial HDL code
format cannot be directly processed by the STA tool or ML models.
Existing RTL representations, such as Binary Decision Diagrams
(BDD), Conjunctive Normal Form (CNF), and And-Inverter Graphs
(AIGER), focus primarily on logic transformations for logic synthe-
sis and verification. They are not optimized for ML-based solutions,
which require exposing the correlation between RTL and netlist. Ex-
isting works have adopted signal-level representations like abstract
syntax tree (AST) [13, 17] and bit-level representations like simple-
operator graph (SOG) [4]. These representations are adopted as ad
hoc solutions, without systematically exploring better candidates.

In this work, we propose a versatile ML-friendly RTL represen-
tation, named Boolean operator graph (BOG), denoted as R and
illustrated in Fig. 2(b). BOG is a universal bit-level RTL represen-
tation and can be specialized into concrete variants (SOG, AIG,
etc.) by selecting different Boolean operators (AND, NOT, OR, XOR,
MUX). Besides viewing BOG as a graph of registers and operators,
we also treat R as a pseudo netlist, where registers and operators
are viewed as pseudo standard cells from the liberty file.

This bit-level BOG enforces the one-to-one mapping between se-
quential RTL signal bits and bit-wise netlist registers. It provides the
basis for the RTL-stage fine-grained endpoint modeling. RTL-Timer
employs four distinct BOG representations: SOG, AIG, AIMG, and
XAG. These four representations share the same functionality for

2A tiny portion of endpoints are primary output (PO) pins.
3We assume a fixed clock frequency, implying slack is solely determined by arrival time.



input [7:0] In1;
reg [7:0] R1;
reg [7:0] R2;
reg [7:0] R3;
wire [7:0] W1;
...
assign W1 = In1 & R3;
...
always @(posedge clk)
R1 <= W1;
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Figure 3: RTL-Timer workflow. We use register-oriented RTL processing and ensemble four RTL representations, enabling fine-
grained and overall timing modeling. Predictions are annotated on HDL files, aiding designers and enhancing logic synthesis.

each design, offering rich and multidimensional analytical perspec-
tives. Intuitively, AIG, with only basic AND and NOT operators, pro-
vides fundamental insights. In contrast, SOG, consisting of a broader
range of operator types, is more similar to the target netlist. AIMG
and XAG reside at the intermediate levels between SOG and AIG.

Furthermore, we employ ensemble learning to aggregate the
strengths of these four representations. This fusion contributes
to a more accurate and robust timing modeling approach with
significantly reduced variance across various designs. Detailed ex-
perimental results will be presented in Section 4.

3.2 A General Register-Oriented RTL
Processing Workflow

While leveraging the BOG representation R, we face another chal-
lenge in RTL prediction: the signals inR cannot match the cells/nets
in the netlistV , leading to a lack of fine-grained labels for R. Fortu-
nately, the register consistency in BOG enables us to label each bit-
wise register (i.e., endpoint 𝑒𝑝𝑖 ) with the slack from N as reported
by STA. Nonetheless, a mismatch remains for internal operators.

Inspired by the propagation mechanism in STA – where each 𝑒𝑝𝑖
accumulates arrival time from all its driving registers, and uses the
maximum arrival time to compute the slack – we propose a com-
prehensive register endpoint-oriented RTL processing approach.
This method aims to capture the timing-related pattern of internal
operators, as demonstrated in step 1 of Fig. 3.

If we assume the netlistN and representation R were exactly the
same, the arrival time of each endpoint 𝑒𝑝𝑖 in N will simply only
depend on the slowest path 𝑆R∗→𝑖

fromR. But logic optimization and
technology mapping will optimize R towards N in logic synthesis.
Therefore, other paths ending at 𝑒𝑝𝑖 in R may also contribute to
the ultimate slowest path in N , and we also need to consider these
paths, though they may not be the slowest in R.

Specifically, we backtrack from each 𝑒𝑝𝑖 to all driving registers in
R to obtain its input cone𝐶 , which includes all input logic of 𝑒𝑝𝑖 . We
then sample two different types of paths from𝐶 : 1) The slowest path

in R: Since we construct R as a pseudo netlist, we can efficiently
traverse R in topological order and perform the traditional STA
algorithm on it. Applying this efficient pseudo-STA process directly
on R, we can trace the “slowest path” 𝑆R∗→𝑖

ending at each register
𝑒𝑝𝑖 . 2) Random paths in R: We also randomly sample other paths
in 𝐶 , denoted as {𝐿R(𝑘 )

∗→𝑖
|𝑘 ∈ [1, 𝐾𝑖 ]}, where the sample number 𝐾𝑖

is proportional to the number of driving registers.
Given a path-level model 𝐹𝐴𝑇 , the ultimate bit-wise max arrival

time prediction of 𝑒𝑝𝑖 depends on the maximum prediction of all
paths ending at 𝑒𝑝𝑖 , as formulated below:

𝐴𝑇
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑖
=𝑚𝑎𝑥 (𝐹𝐴𝑇 (𝑆R∗→𝑖 ), {𝐹𝐴𝑇 (𝐿

R(𝑘 )
∗→𝑖

)}),

𝐿𝑜𝑠𝑠𝑖 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐 (𝐴𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑖
, 𝐴𝑇 𝑙𝑎𝑏𝑒𝑙𝑖 ) .

(3)

This loss function is differentiable with respect to model 𝐹𝐴𝑇 ,
enabling end-to-end gradient-based model training. In this way, we
solve the lack of labels resulting from the gap between RTL and
netlist and establish a crucial link between the internal operators
in R and the target endpoints’ max arrival time.

Building upon bit-wise endpoints, we can calculate the timing
for signal-wise endpoints, where the signals are the variables origi-
nally defined in the HDL codeV . Since an RTL signal can comprise
multiple bits, we determine the arrival time of each signal-wise end-
point based on the longest arrival time among all its bits, referred
to as the signal max arrival time in subsequent discussions. As
demonstrated in Section 2, we address both the signal max arrival
time value regression and the critical level ranking tasks.

In addition to fine-grained endpoints, we also target the overall
timing metrics for the whole design (i.e., TNS and WNS), which are
directly calculated utilizing the negative register slack.

3.3 Feature Exploration for RTL Processing
We extract three levels of features during our RTL processing, as
listed in Table 2. 1) Design-level: Global design features are cru-
cial for comparing endpoints across different designs. Even similar



synthesized timing paths from distinct designs can show varied
slacks, often due to diverse optimization efforts in logic synthesis.
Factors like design size and the critical ranking of timing paths are
thus included as our design features. 2) Cone-level: The number of
driving registers is used to evaluate the size of the cone. It also helps
to differentiate the similar endpoints. 3) Path-level: For timing paths
identified by the STA tool, we extract physical-related features and
compute key statistics like sum, average, and standard deviation.
There is a reasonable correlation 𝑅 between each feature and the
arrival time label at endpoints, providing insightful patterns for
further fine-grained model (i.e., 𝐹𝐴𝑇 ).

Our ensemble approach incorporates the four proposed BOG
representations for robust timing modeling. It combines the pre-
dictions based on the four BOGs and is supplemented by statistics
such as the maximum, minimum, and average of these predictions.

Type Feature Avg. 𝑅

Design

Rank level

/
% of the endpoint rank
# of sequential cells

# of combinational cells
# of total cells

Cone # driving reg of input cone 0.45

Path

Arrival time by STA on R 0.43
# of level of the timing path 0.51

# of operators 0.56
Fanout 0.40

Load capacitance 0.38
Slew 0.38

Table 2: Feature summary.
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3.4 ML Model Exploration for RTL Processing
As for themodel, we propose to exploremultiple promisingMLmod-
els to evaluate both the fine-grained timing and TNS/WNS based
on our processed RTL representations, as shown in step 2 of Fig. 3.

3.4.1 Bit-wise Endpoint Modeling. We investigate various ML mod-
els, each integrated with the customized loss function tailored
for register-oriented RTL processing. The models include: 1) Tree-
based: A lightweight XGBoost model; 2) MLP: A multilayer percep-
tron (MLP) model; 3) Transformer: This model combines a trans-
former, for local path modeling, with an MLP to capture global
features. Once the modeling is complete, we can predict the max
arrival time at all bit-wise endpoints within a design, and then
further calculate their ranking.

3.4.2 Signal-wise Endpoint Modeling. As previously mentioned,
the signal max arrival time is determined by the bit with the longest
arrival time. Our signal model is thus constructed leveraging the
bit-level predictions. For the regression model, we employ a light-
weight tree-based model. Regarding the ranking model, we reframe
the problem as a learning-to-rank (LTR) task [3]. Unlike regression
methods that predict absolute target values, LTR learns and pre-
dicts the relative ranking among items. It uses supervised learning
with training data comprising queries, each containing a group
of documents with features and relevance scores as labels. In our
context, each design is treated as a query, all its endpoints are doc-
uments, and their critical ranking levels are the labels. The ranking
model orders the critical levels of endpoints within each design. We
leverage a pair-wise ranking model to capture feature distinctions
between timing path pairs.

3.4.3 Design Overall Timing Modeling. Given that TNS and WNS
rely on the negative register slack, our proficiency in accurate fine-
grained endpoint modeling leads to high prediction accuracy. In our
model, we calculate TNS and WNS using the bit-wise predictions
for ensemble features. Additionally, design-level features are incor-
porated to distinguish among designs of varying scales. Another
tree-based model is employed for this regression task.

3.5 Optimization Enabled by RTL-Timer
The fine-grained predictions are unprecedentedly applied in two
early optimization applications: 1) For manual optimization, RTL-
Timer provides early feedback to RTL designers by directly an-
notating detailed timing information on HDL; 2) For automatic
optimization, RTL-Timer can set fine-grained optimization options
in the synthesis script. This is illustrated in step 3 of Fig. 3.
3.5.1 Automatic Slack Annotation on HDL. We have implemented
an annotation tool that automatically applies RTL-Timer’s timing
evaluation onto the original HDL code. It marks the technology
node and the overall TNS/WNS for the whole design. For each se-
quential signal, it annotates the predicted slack value and its relative
ranking group. This tool may become a plug-in for an Integrated
Development Environment (IDE), assisting RTL designers to modify
timing-critical components without the logic synthesis process.
3.5.2 Enhancing Logic Synthesis Process. RTL-Timer can efficiently
control optimization options during logic synthesis. Here, we high-
light two key options supported by commercial tools: path grouping
and register retiming. By combining these two approaches together,
we efficiently improve both TNS and WNS. Fig.4 illustrates their
effects on the arrival time distribution.

Default logic synthesis tools only focus on the most critical tim-
ing violations, often leaving huge space for improvement in other
timing endpoints. To address this, we divide all endpoints into four
groups based on their predicted signal-wise endpoint rankings. We
then apply the group_path command for each register signal, al-
locating specific optimization efforts to each group. This strategy
improves TNS without affecting WNS. As for retiming, which is not
activated by default due to the lack of proper guidance, we focus on
the top 5% of critical endpoints. Utilizing the retime command, reg-
isters are repositioned across combinational logic gates for more bal-
anced timing results, particularly beneficial for WNS optimization.

Note that the specific register names need to be assigned to
the above two commands, which was impossible without our fine-
grained predictions.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We implement our models using Scikit-learn and Pytorch frame-
works. Regarding the model hyper-parameters, all the XGBoost
models across different granularities are constructed with 100 esti-
mation trees and a maximum depth of 45. The MLPs are configured
with 3 layers and a hidden dimension of 512. The transformer model
shares the same hyper-parameters as used in [4, 17]. Since there
is no existing work on the general fine-grained timing prediction
for sequential RTL designs, we adopt the SOTA layout-stage solu-
tion from [15] as a baseline, where we customize a GNN model to
capture the bit-wise endpoint timing information. For the Learning-
to-Rank task, we employ the pairwise LambdaMART algorithm
with 100 estimators and a maximum depth of 30.



We train and evaluate our model on 21 open-source RTL designs
using 10-fold cross-validation. Training and test datasets include
strictly different designs. The benchmark spans various mainstream
HDLs, covering a wide design scale range from 6K to 510K gates,
as detailed in Table 3. For dataset generation, we utilize Synopsys
Design Compiler and Cadence Innovus with the NanGate 45nm
PDK, for logic synthesis and physical design, respectively. Static
timing analysis is performed using Synopsys Prime Time.

Benchmarks★ #Designs Design Size Range HDL Type#K Gates #K Endpoints
ITC’99 6 9 - 45 0.4 - 1.3 VHDL
OpenCores 4 6 - 56 0.2 - 3.8 Verilog
Chipyard 3 20 - 32 2.5 - 4.1 Chisel
VexRiscv 8 7 - 510 1.2 - 146 SpinalHDL
★ Small designs (<5K Gates) and those dominated by huge memory modules are
excluded from the original benchmarks.

Table 3: Benchmark design information.

4.2 Evaluation Metrics
To evaluate solutions, we employ multiple metrics: the correlation
coefficient (𝑅), determination coefficient (𝑅2), mean absolute per-
centage error (MAPE), and critical level ranking coverage (COVR):

MAPE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑦𝑖

×100%, COVR =
1
𝑚

𝑚∑︁
𝑔=1

#(𝑆𝑔 ∩ 𝑆𝑔)
#𝑆𝑔

×100%

The 𝑦 and 𝑦 are predictions and labels. In COVR, 𝑆𝑔 is the group set
categorized by the critical ranking level. In each design, we divide
all the signal-wise endpoints into 4 groups: the top 5% as group1,
5%-40% as group2, 40%-70% as group3, and the remaining as group4.
Notably, the groups are directly used in the subsequent optimiza-
tions. For each group, we calculate the coverage by dividing the
number of prediction-label intersections by the label group size.

A higher 𝑅 or 𝑅2 and lower MAPE indicate better regression
accuracy, and the higher coverage COVR represents amore accurate
clustering of endpoints into the criticality groups.

4.3 Modeling Performance
As shown in Table 4, leveraging the fine-grained bit-wise prediction,
which has a correlation of 0.88, our signal-wise prediction achieves
a correlation of 0.89 and an 80% ranking coverage. The lightweight
tree-based model outperforms all the deep learning models. We
attribute this to our comprehensive feature engineering approach,

Fine-Grained Method 𝑅 MAPE (%) COVR (%)
Tree-based w/o sample 0.80 26 59
MLP 0.71 35 56
MLP w/o sample 0.65 38 54
Transformer 0.73 35 57
Customized GNN 0.25 53 46

Bit-wise

RTL-Timer 0.88 12 66
Regression w/o bit-wise 0.56 28 56
Ranking w/o bit-wise / / 39
RTL-Timer (regression) 0.89 15 71Signal-wise

RTL-Timer (ranking) / / 80

Overall Method 𝑅 𝑅2 MAPE (%)
SNS [17] 0.73 0.58 33
MasterRTL [4] 0.89 0.74 15WNS
RTL-Timer 0.91 0.86 12
ICCAD’22 [13] 0.65 0.32 42
MasterRTL [4] 0.96 0.94 34TNS
RTL-Timer 0.98 0.97 18

Table 4: Modeling accuracy comparison and ablation study.

Metrics SOG AIG AIMG XAG Ensemble

Bit-wise Avg. R 0.85 0.75 0.76 0.77 0.88
Std. R 0.18 0.25 0.26 0.21 0.08

Signal-wise

Avg. R 0.82 0.81 0.84 0.8 0.89
Std. R 0.15 0.22 0.1 0.1 0.06
Avg. COVR 65 71 72 71 80
Std. COVR 18 19 21 21 8

Table 5: Comparison of four representation variants and the
effect of ensemble learning to reduce variance.

which treats the original RTL design as tabular data — a domain
where tree-based methods excel [5]. Additionally, building upon our
bit-wise predictions, the overall design TNS andWNS show superior
correlations of 0.98 and 0.91, respectively, which outperform all
three SOTA methods [4, 13, 17].

Furthermore, to evaluate the contribution of each strategy of
RTL-Timer in fine-grained modelings, we conduct ablation stud-
ies by selectively removing key strategies of our solution, also
demonstrated in Table 4: 1) No sampled paths: By exploiting vari-
ous models with only the slowest path, we observe notable accuracy
decreases in all types of models (e.g., 𝑅 drops 0.08 in the tree-based
model). 2) Removing bit-wise prediction: If we eliminate the de-
tailed analysis at the bit level, and directly model the RTL signal,
there will be a significant decrease in accuracy for both regression
(i.e., 𝑅: from 0.89 to 0.56) and ranking (i.e., COVR: from 80% to 39%)
tasks. 3) Disabling the LTR method: Without the LTR model, the
ranking accuracy noticeably diminishes, falling from 80% to 71%.

We also evaluate the four BOG variants and the impact of en-
semble learning, as detailed in Table 5. The results reveal that
each representation contributes to the prediction capabilities, with
ensemble learning substantially reducing variance, thus ensuring
robustness across diverse benchmarks and tasks.

Then we further look into why ensemble representations are effec-
tive. Analysis of feature importance shows that the average across
the four representations forms the core of the final predictions, and
omitting any representation leads to a decrease in accuracy. Notably,
SOG and AIG carry more weight, reflecting their significant repre-
sentational differences, whereas AIMG and XAG contribute simi-
larly. Moreover, the inclusion of cone and design features markedly
enhances the model’s generalization capability across various de-
signs during the representation ensemble.

Fig. 5 visualizes the experimental results for a design example
b18_1. In Fig. 5(a), the pseudo-STA results of the four represen-
tations are shown. While these results do not closely match the
post-synthesis arrival time, they offer valuable patterns for further
modeling. Utilizing our ML models and ensemble learning tech-
nique (denoted as ‘En’), both bit-wise and signal-wise predictions
achieve high accuracy, as depicted in Fig. 5(b) and (c).

4.4 Optimization Performance
Table 6 demonstrates the automatic optimization results for each
design. Leveraging the predicted rankings, our method effectively
improves timing on both TNS and WNS for most designs, while
maintaining or even decreasing the other design quality metrics (i.e.,
power and area). Cases where TNS or WNS worsen are considered
non-optimized. Practically, designers can concurrently run default
and optimization synthesis flows at the same time. In this way, solu-
tions with better outcomes can be selected without time-consuming
iterations. ‘Avg1’ considers all the results from the optimization
flow, while ‘Avg2’ incorporates default synthesis results for those



(a) RTL-STA (b) Bit-wise prediction (c) Signal-wise prediction (d) Optimized distribution

Figure 5: Evaluated/predicted arrival time and optimized distribution for a design example b18_1.

non-optimized cases. Experiments illustrate an improvement up
to 33.5% in TNS (avg. 9.9%) and 16.4% in WNS (avg. 3.1%). Notably,
compared to the optimization with ground-truth ranking, our ap-
proach delivers comparable or superior results.

Although demonstrating improvements initially in the logic syn-
thesis phase, our optimizations’ impact remains significant through-
out the placement stages. On average, we observe a 4.6% improve-
ment in WNS and 6% in TNS after placement. These improvements
even persist after the post-placement timing optimization, showing
an average enhancement of 3.1% in WNS and 6.8% in TNS.

Fig. 5(d) showcases the improved arrival time distribution en-
abled by the RTL-Timer’s predictions. Combining the two optimiza-
tion options, the original high peak distribution is optimized into
two lower peaks with better TNS. Meanwhile, the slowest arrival
time (i.e., WNS) is effectively enhanced.

4.5 Runtime Analysis
RTL-Timer delivers fast fine-grained timing evaluation, without the
need for the logic synthesis process. Overall, the modeling method
consumes about 4% of the default synthesis runtime. It comprises
two key parts: 1) RTL process. This involves converting HDL files
into BOG variants, a process that can be parallelized.Wemeasure its
overhead based on the most time-consuming AIG construction (i.e.,
3.2%). Additionally, the register-oriented RTL processing accounts
for 0.9%. 2) Model inference time. It requires less than 0.1 seconds.

When employing our optimization in logic synthesis, the runtime
extends by an average of 45%, due to the separate optimization
efforts for different path groups and retiming.

5 CONCLUSION AND FUTUREWORK
In this paper, we present RTL-Timer, the first fine-grained general
timing estimator for RTL designs, incorporating four RTL represen-
tations with a customized loss function to accurately evaluate the
arrival time on registers. RTL-Timer facilitates optimizations for
both designers and EDA tools. Our future work will focus on en-
hancing prediction accuracy for more detailed optimization options
and explore the potential of automating RTL design optimization
using the large language model (LLM).
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