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Abstract—In recent years, we have witnessed many excellent machine
learning (ML) solutions targeting circuit layouts. These ML models
provide fast predictions on various design objectives. However, almost all
existing ML solutions have neglected the basic interpretability require-
ment from potential users. As a result, it is very difficult for users to figure
out any potential accuracy degradation or abnormal behaviors of given
ML models. In this work, we propose a new technique named APPLE to
explain each ML prediction at the resolution level of circuit elements. To
the best of our knowledge, this is the first effort to explain ML predictions
on circuit layouts. It provides a significantly more reasonable, useful, and
efficient explanation for lithography hotspot prediction, compared with
the highest-cited prior solution for natural images.

I. INTRODUCTION

In recent years, many machine learning (ML) techniques have been
proposed in the VLSI design flow, ranging from logic synthesis [1]
to physical design [2] and design for manufacturability (DFM) [3].
Take DFM as an example, as transistor feature sizes shrink, the
manufacturing yield is increasingly affected by the variation in
the lithographic process. As a result, manufacturing defects (i.e.
lithography hotspots) may arise for some sensitive layout patterns,
and thus detection of such defects is important before tape-out.
The conventional lithography hotspot detection with lithographic
simulation is accurate but very slow. Recent studies on ML solutions
show that convolutional neural networks (CNN)-based lithography
hotspot detectors can achieve orders-of-magnitude speedups while
maintaining a reasonably high accuracy [4]–[6].

While hundreds of publications [3] have been devoted to develop-
ing more advanced or customized deep learning methods in electron-
ics design automation (EDA), however, one essential question from
potential model users seems to be neglected by many practitioners:
Why shall I trust your ML prediction on my circuit? This question
roots in the difficulty in explaining ML solutions, especially complex
deep learning models like CNNs. Currently, model users are only
provided with predictions of their circuit quality/problem without
any extra information. It is very difficult for users to figure out
any potential accuracy degradation or abnormal behaviors of given
ML models. As we will discuss, developers often overestimate their
models, and unexpected accuracy degradation is not rare in practice.
Due to such a lack of explanation on predictions, users inevitably
have much less trust in ML predictions compared with traditional
simulation tools, especially when wrong predictions can directly
affect key design objectives like the manufacturing yield. We believe
this neglected problem will become a major obstacle that prevents
the wide adoption of ML techniques in the EDA industry.

To the best of our knowledge, this work APPLE is the first attempt
to explain ML predictions on circuit layouts. It is a model-agnostic
solution that can be directly built on top of any existing ML solutions.
In this paper, we primarily target lithography hotspot detection [4]–
[6], a representative ML for EDA application on layout, which has
received wide attention. Explaining ML predictions with APPLE
brings at least three benefits beyond what is possible in prior arts, as
we discuss below.

First, explaining predictions allows users to inspect any prediction
and choose whether to trust it during inference. In practice, unex-
pected accuracy degradation may arise when ML models are applied
to essentially new test circuits or patterns never seen by the model
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during training [7], [8]. It is a fallacy to believe ML models will
always provide the same level of accuracy demonstrated in validation
when it is eventually deployed “in the wild” for real applications.
In many ML for EDA works, the held-out validation/test dataset
for accuracy evaluation may be an insufficient representation of real
model inputs. Such validation data is often too similar to the training
data, since they are usually collected in a similar way, from similar
designs, and using the same technology node and design flow. But
currently there are no techniques that support developers/users to
know for which type of new test circuits, their ML model is no
longer applicable. APPLE mitigates this challenge by enabling users
to inspect a prediction before trusting it.

Second, explaining predictions enables robust ML models against
potential malicious attacks. In recent years, malicious attacks includ-
ing adversarial [9] and backdoor [10] attacks prove effective on ML
models for layout. They are especially threatening for models on
lithography since it is the last step before tape-out. A latest work [11]
proposes robust models against adversarial attacks on lithography, but
the backdoor attack is still unsolved. With APPLE, abnormal model
behaviors caused by backdoor attacks can be detected.

Third, besides benefiting model users at the inference stage,
explaining predictions also provides extra guidance to the develop-
ment of ML models. Besides evaluation with validation accuracy,
developers can inspect whether an ML model is trained to make
predictions based on the pattern of interest (i.e. hotspot patterns),
instead of other selection bias1 in samples.

To avoid confusion, we hope to emphasize that there is an essential
difference between APPLE and potential objective-detection ML
models that directly predict hotspot locations. Instead of being a new
ML model, APPLE is a lightweight model-agnostic explainer that
can be directly applied on top of any existing ML models, which
may perform simple classifications. As an analytical method requiring
no training itself, APPLE leaves maximum flexibility to ML model
developers or users, who can decide which types of ML to build or
use, entirely based on their own demand and available resources.

Our main contributions are summarized as follows:
• We propose a new technique named APPLE2 to explain the ML

prediction at the resolution level of circuit elements. To the best
of our knowledge, this is the first work devoted to explaining
individual ML prediction on circuit layouts.

• APPLE can explain each individual ML prediction by annotating
the ML model’s focus region, which means a small portion of
input sample that has the largest impact on each ML prediction.

• APPLE provides a reasonable, useful, and efficient explanation
of ML prediction. Compared with the most widely adopted
solution for natural images, it annotates hotspot patterns multiple
times more accurately and runs 30× faster. Its explanation also
enables the inspection of unexpected accuracy degradation and
malicious attacks. This is beyond the capability of prior works.

• APPLE is a general solution that can be built on top of any
existing ML models. It does not require any knowledge about the
target ML model. Therefore, it is maximally compatible with all
existing innovations in model structure and feature engineering.

1Consider an example of classifying cows and camels. Due to the selection
bias, pictures of cows are taken in green pastures, while camels are in deserts.

2APPLE is released in: https://github.com/hkust-zhiyao/apple.
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Fig. 1: APPLE-generated explanations on positive predictions from an accurate ML model. The generated model focus regions are annotated in
green. All ground-truth hotspot regions are already centered and marked with yellow boxes. This hotspot location is confidential to all algorithms.
According to these explanations, this ML model’s focus region overlaps surprisingly well with actual hotspots. It means the model’s predictions
are based on correct hotspot patterns. In practice, selected explanations can be evaluated by comparison with ground-truth hotspot locations from
simulation, or by engineers’ inspection. Then model users can choose to trust such test predictions.

LIME

Fig. 2: LIME [12]-generated explanations as a baseline. The ML model, predictions, samples, and the meaning of colors are all the same as Fig. 1.
According to LIME’s explanation, the model’s focus regions fail to indicate reasonable hotspot patterns. It implies the model may not be trustworthy.

II. PRELIMINARIES

A. Machine Learning for Hotspot Prediction

Most ML-based layout hotspot prediction tasks, including the
prediction of lithography hotspots [4]–[6], IR drop hotspots, and DRC
violation hotspots [13] all share a similar problem formulation. For
a circuit layout, task-related features X are extracted from it. When
c features are extracted, X ∈ Rw×h×c, with each feature in Rw×h.
The ground-truth label y is generated with EDA tools. It can be a
scalar R indicating the existence/number of hotspots. Then an ML
model F is trained with features X and simulated labels y.

F (X) : X ∈ Rw×h×c → y ∈ R
Specifically, for lithography hotspot detection, the feature X usu-

ally only includes one binary feature directly describing the existence
of circuit elements as blockages in a layout clip. The label y is also
binary, indicating whether a hotspot exists in this clip. The above
problem formulation can be simplified as below.

F (X) : X ∈ {0, 1}w×h → y ∈ {0, 1}
This formulation is similar to image classification in computer

vision. Similarly, most state-of-the-art ML solutions on layouts adopt
deep neural networks like CNNs as the model F . The inherent
complexity of these deep learning models exaggerates the difficulty
in understanding the predictions on circuit layouts.

B. Explainability or Interpretability of ML Models

Although rarely studied in the application on circuits or EDA, the
explainability or interpretability of ML models is not an unexplored
topic in general ML applications on image and tabular datasets [14].
Existing ML explainers can be categorized based on various met-
rics, including whether they can explain each individual prediction,
whether they are model-agnostic, whether they require white-box
access to the ML model, and what data types they handle.

In this work, we select the most widely-adopted3 ML explainer
named LIME [12] as the baseline method to compare with APPLE4.
For a given image Ximg and an ML model, LIME highlights input
regions that contribute the most to each prediction. Given the input
Ximg , LIME first breaks it down into many contiguous patches of
similar pixels (super-pixel). Then it randomly perturbs some super-
pixels in inputs by setting them to zero, and generates ML predictions

3LIME [12] has >10K citations on Google Scholar and stars on GitHub.
4To the best of our knowledge, there are no prior ML explainers customized
for IC layout, we thus choose this general solution LIME as our baseline.

on all these new perturbed samples. Finally, it fits a linear model
to evaluate different super-pixels’ impact on prediction results, and
highlight the most important super-pixel regions.

However, for two-dimensional inputs, existing ML explainers like
LIME are designed to handle natural images, while not customized
for circuits. In this work, we treat circuit layouts as a special data
type and customize APPLE for their unique patterns in multiple
aspects. First, APPLE manipulates the input samples by changing
circuit elements (i.e. polygons) instead of pixels. This makes the
explanation much more reasonable and efficient. Second, APPLE
clearly differentiates the selected focus region and the remaining part.
Measuring both parts produces more information during explanation
and enables the detection of malicious attacks. Third, APPLE tries
to minimize the selected region. This customization captures the
local pattern of lithography hotspots, and thus contributes to more
reasonable explanations. Fourth, APPLE is designed to primarily
search the patterns that are more likely to be hotspots. It contributes
to APPLE’s 30× efficiency over LIME while does not affect the
final results. The Fig. 1 and Fig. 2 compare the explanations from
these two methods as a preview, with the detailed analysis given in
Subsection IV-B.

III. METHODOLOGY

A. Concept of Focus Region in Circuit Layout

We develop APPLE to explain the ML prediction F (X)5 on each
layout sample X by indicating where the ML model is focusing in
this input sample. Such focus region denotes a key part of X that has
a larger impact on the ML prediction. For positive predictions, the
model focus regions are the part of inputs that contributes maximally
to the positive prediction, and vice versa. We use the positive
prediction F (X) > 0 as an example to introduce the algorithm.

For an input sample X ∈ {0, 1}w×h, we can extract a local region
x from it, with the remaining parts denoted as X−x. Both x and X−
x are also binary matrices: x ∈ {0, 1}w×h, (X − x) ∈ {0, 1}w×h.
To improve readability, we also describe this extracted region x with
a less rigorous notation: x ∈ X .

After the extraction, we can generate model predictions on the
selected part as F (x) and the remaining part as F (X − x). The
target is to extract the focus region x∗ ∈ X that has the maximum
impact on the ML prediction. We propose two metrics to evaluate

5Please notice that to capture a large range of prediction value, in this paper,
F (X) refers to the raw ML prediction (logit) before the final sigmoid
function. It means the F (X) ∈ (−∞,+∞) instead of (0, 1).



Algorithm 1 Step 1. Element-Level Focus Region x′ Generation

Input: Each test input sample X ∈ {0, 1}w×h. A trained ML
model F . The ML prediction on this sample F (X) ∈ {0, 1}.

1: function EVALUATET(x,X,A(x))
2: if Tmax < T (x,X) in Equation 2 then
3: x′ = x, Tmax = T (x,X)

4: end function
5:
6: Initialize global variables x′ = None, Tmax = 0
7: Identify all n circuit elements {e1, ...en} in sample X
8: for ei ∈ {e1, ..., en} do
9: // Iterate n individual element as x

10: Set x = ei, A(x) = 12, EVALUATET(x,X,A(x))
11: for {ei, ej} ⊂ {e1, ..., en} do
12: // Iterate n pairs of neighboring elements as x
13: Set x = ei + ej , A(x) = 22, EVALUATET(x,X,A(x))
14: for {ei, ej , ek} ⊂ {e1, ..., en} do
15: // Iterate n triple-neighboring-elements as x
16: Set x = ei + ej + ek, A(x) = 32, EVALUATET(x,X,A(x))
Output: The circuit-element-level focus region x′ (Notice that this
x′ is not yet the final solution x∗.)

such impact. First, when the part x is presented to the ML model
alone, the prediction F (x) should remain a large positive number.
Second, after removing x, the prediction on the remaining part X−x
should drop significantly, perhaps to a negative number. It means the
target focus region x∗ should maximize F (x) and minimize F (X −
x). We thus define a new impact function as I(x) = F (x)−F (X−
x). Then focus region x∗ of each positive ML prediction F (X) > 0
is formulated as below:

x∗ = argmaxx∈XI(x) = argmaxx∈XF (x)− F (X − x) (1)

However, Equation 1 is not sufficient. Besides maximizing I(x), a
smaller focus region x is also preferable. Without this requirement,
the algorithm can directly extract the whole sample with x∗ = X ,
thus I(x∗) = F (X) − F (0). It may maximize the impact function
I(x) but produces no useful information. Therefore, we define a new
area function A(x) to evaluate the regions occupied by x. The final
target is scaled by this area function. This new target I(x)/A(x) can
be viewed as the impact per unit area. Now the model focus region
x∗ of each positive ML prediction F (X) > 0 is rewritten as:

x∗ = argmaxx∈X

I(x)

A(x)
= argmaxx∈X

F (x)− F (X − x)

A(x)

Similarly, for negative prediction F (X) < 0, we try to minimize
I(x) as a negative number. Therefore we can provide a general form
of our target for all predictions, using the absolute value of I(x):

x∗ = argmaxx∈X

|I(x)|
A(x)

= argmaxx∈X

|F (x)− F (X − x)|
A(x)

(2)

For simplicity, we denote the final target function in the right of
Equation 2 as T (x,X). Then x∗ = argmaxx∈XT (x,X).

B. Key Circuit Elements as Focus Region - Step 1
Now we introduce how to implement Equation 2 to explain each

ML prediction F (X) with generated model focus region x∗. For
better resolution and efficiency of the explainer, the implementation
is decomposed into two similar steps. In the first and most important
step, the extracted part x is restricted to be complete circuit elements
(i.e. polygons) from X . The intermediate selected focus region that
maximizes T (x,X) in this step is denoted as x′. In the second step,
which is covered in next Subsection, the selected x′ will be further
broken down into multiple smaller parts. The parts that maximize
T (x,X) will be the final focus region x∗.
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(c) Selection of final focus region x∗ in step 2.
Fig. 3: (a) & (b) Decomposition of a sample X into x and X − x at the
circuit-element level in step 1. (c) Selection of focus region x∗ in step 2.

This first step is introduced in Algorithm 1. For each sample X ∈
{0, 1}w×h, we identify all n circuit elements e1, ..., en ∈ {0, 1}w×h

in this sample. Each circuit element is one polygon in X . Therefore,
X =

∑n
i=1 ei with element-wise matrix addition.

Fig. 3 visualizes the decomposition of an input sample X at the
resolution of circuit elements. The algorithm starts with setting x
to include different circuit elements. It first iterates each individual
circuit element as x, as shown in the Fig. 3(a) and line 8-10 of
Algorithm 1. The target is to find the region x that maximizes target
function T (x,X) in Equation 2. After iterating through n individual
elements, we start to search n pairs of neighboring elements as x, as
shown in the Fig. 3(b) and line 11-13 of Algorithm 1. After that, we
further search three neighboring elements.

This algorithm incorporates background knowledge about lithogra-
phy hotspot detection. It only searches neighboring elements for each
iteration, since most lithography hotspots are caused by local patterns.
Our experiments also validate that using non-neighboring elements as
x cannot maximize the target function T (x,X). For similar reasons,
it does not search more than three elements in x. It is uncommon
for a hotspot to be caused by four elements. Also, we verify that no
four elements as x can maximize T (x,X) in the experiment.

As for the area function A(x), as Algorithm 1 shows, for simplic-
ity, we directly set A(x) according to the number of circuit elements
in x. To better encourage a smaller x region, we adopt a quadratic
function for it. It means A(x) = 12 if x includes one element,
A(x) = 22 for two elements, A(x) = 32 for three elements, etc.

In this algorithm, most computation cost comes from the repetitive
inference with ML models. For each sample with n circuit elements,
since we select only neighboring elements, the number of times it
invokes the ML model is only in O(n). More importantly, the n
is relatively small (< 20) for lithography benchmarks and we can
perform all O(n) times of ML inference in parallel with one GPU.
The parallelized ML inference with GPU is very fast and this is one
major advantage of ML for EDA solutions. As a result, APPLE is
already a very efficient explainer algorithm and we do not further
accelerate it. In the future, if we need a faster APPLE for different
tasks on larger input samples, it is possible to start with an even
coarser-grained selection to gradually narrow down the scope of x.
Another potential faster solution is to randomly select x instead of
iterating through all circuit elements.

C. Key Circuit Parts as Focus Region - Step 2
In the first step, we have selected x′, which includes individual or

several neighboring circuit elements that maximize T (x′, X). We are
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Fig. 4: Distribution of positive sample X and remaining parts X − x∗

that are predicted negative. (a) The conceptual visualization of X and
X − x∗. (b) Visualization of real samples [15] with t-SNE [16]. Positive
samples X and corresponding X − x∗ overlap well in the distribution.

still not satisfied with such resolution. In this subsection, we propose
to further break down the selected circuit elements x′, then only select
its key parts that have the highest impact on ML prediction.

The selected x′ is broken down into four equal-size parts along its
longer side. This process is visualized in Fig. 3(c). Then very similar
to finding elements x′ from X in Algorithm 1, this step further finds
the parts x∗ from x′ that maximizes T (x,X). For this second step,
similarly, A(x) = 12 for one part, A(x) = 22 for two parts, etc. The
starting point x′ consists of all four parts in this second step. This
step requires even less computation and is faster than step 1. After
selection, the key parts x∗ is the final output of APPLE, indicating
the focus region of each ML prediction F (X).

D. Understanding the Method from Another Perspective
In this work, we view the output of APPLE as the ML model’s

focus regions that have large impact on each prediction. Besides this,
we can also understand our method from another perspective, which
is about perturbations across ML model’s decision boundary.

For a positive prediction F (X) > 0, the goal includes minimizing
F (X − x∗). Then this focus region x∗ can also be viewed as a
tiny perturbation on X towards the ML model’s decision boundary,
targeting a most negative prediction on X − x∗. As we will show
in results, for the majority of positive predictions, the corresponding
F (X−x∗) < 0. This perspective is illustrated in Fig. 4(a), with real
measurement on benchmark [15] shown in Fig. 4(b). Each positive
test samples X (in pink) and its corresponding X−x∗ (in green) are
very similar and overlap with each other in the data distribution. This
tiny perturbation x∗ successfully flip model’s positive prediction on
X to negative on X−X∗. This concept is a bit similar to malicious
attacks like backdoor and adversarial attacks. This perspective helps
understand why this method can be applied to detect attacks.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
In the experiment, we adopt representative benchmarks [10], [15]

for lithography hotspot detection to evaluate our algorithm. They are
summarized in Table I and named B1, B2, and B3 for simplicity. We
first adopt the mostly widely-adopted ICCAD’12 benchmark B1 [15]
to validate APPLE and compare with baseline method LIME6. This
benchmark has been adopted in many previous works on lithography
detection [4]–[6], [17].

To thoroughly evaluate our methods, we further build more com-
plex and challenging samples based on B1 to generate a new bench-
mark named B2. Details about benchmark B2 will be introduced in
Subsection IV-D. Finally, we will use B3 [10] to study the application
of APPLE for backdoor attacks. The B3 benchmark [10] is exactly
the dataset used in prior backdoor attack studies [10]. In Table I, the
HS means the number of positive samples with hotspots and NHS
means the number of non-hotspot negative samples.

6B1 includes five sub-benchmarks. When measuring a metric on B1, like prior
works, we first evaluate it on each sub-benchmark, then average five values.
Also, the number of samples in B1 may slightly differ in different works.

TABLE I: Statistics of Three Lithography Datasets

Benchmarks Training Testing
HS NHS HS NHS

B1. ICCAD’12 [15] 1303 17441 2750 14458
B2. Complex benchmark [15] 4167 13893 1286 14614
B3. Backdoor attack [10] 787 19213 820 19180

In the experiment, the APPLE method is implemented with
Python3. All CNN-based ML models are implemented with PyTorch
1.12 [18]. The LIME [12] baseline is directly adopted from its open-
sourced repo on Github. The experiment platform uses Intel Xeon
Platinum 8375C CPU and one Nvidia GeForce RTX 3090 GPU for
both APPLE and LIME. To balance the accuracy and speed of LIME,
the number of new samples to generate and infer for each prediction,
as a hyper-parameter, is set to 300 in the LIME baseline.

For benchmark B1, the ground-truth hotspot location of every
positive sample X is already centered [15]. Therefore, it provides
us with an excellent ground truth to evaluate whether an ML model
is focusing on the correct pattern. This information of hotspot being
in the center is strictly confidential during the development of ML
models and deployment of the APPLE method.

B. Visualization of Different Explainers
We first train a very accurate CNN-based model on benchmark B1

and achieve the test accuracy with ROC AUC > 99%. Its true positive
rate, also named accuracy, equals 98% when the false positive/alarm
rate < 5%. This can be regarded as very accurate according to
existing studies [4]. We then apply APPLE on this accurate model’s
positive predictions on B1 test dataset, with results already shown
in Fig. 1. We first focus on explaining positive predictions since
they have clear ground-truth hotspot locations and thus allow our
straightforward inspections. In Fig. 1, the model-focus region x∗

generated by APPLE is annotated in green color. The already centered
ground-truth hotspot locations are indicated by a yellow squared box.
We emphasize again that the information of hotspot being in the
center is confidential. According to Fig. 1, the model focus regions
(in green) overlap surprisingly well with the real hotspots (in yellow
box). The result indicates that: 1) According to APPLE, this accurate
ML model is making predictions based on correct hotspot patterns.
By evaluating selected focus regions through engineers’ inspections
or simulations, model users are encouraged to trust the prediction. 2)
Seems APPLE is able to generate a very reasonable explanation of
ML model’s focus regions. We will further validate this.

In comparison, Fig. 2 visualizes the explanation from the widely-
adopted baseline LIME [12] on exactly the same ML model’s pre-
dictions. Although some overlap still exists between LIME-generated
focus regions and actual hotspot regions, there are many other regions
that are obviously irrelevant to the actual hotspots. It indicates that
according to LIME, the accurate ML model is not focusing on correct
hotspot patterns. Different from APPLE’s explanation in Fig. 1, it
may imply the prediction is not trustworthy.

In fact, it is difficult to give a definite and standard answer on which
explanation of ML prediction is correct. But we can still make evalua-
tions based on which explanation is more useful and reasonable. First,
APPLE indicates that ML predictions are trustworthy. It is confirmed
by the high test accuracy. In real application scenarios where test
accuracy is unknown, APPLE’s conclusion provides correct guidance
to model users. In comparison, LIME’s explanations in Fig. 2 could
be misleading. Second, from the perspective of human designers, the
regions annotated by LIME are messy and fail to indicate actual
lithography unfriendly patterns. For the ML model with a high test
accuracy, such an explanation is rather unreasonable.

C. Quantitative Measurement of Different Explainers

Besides the qualitative analysis of visualized patterns, we further
propose a series of new metrics named FC (focus) to quantitatively
measure whether an ML model’s positive prediction is focusing on
correct hotspot patterns in input X , according to a given explainer.



(a) (b)
Fig. 5: FC metrics vs test accuracy for APPLE and LIME. Measured on
multiple ML models. APPLE shows a strong correlation between accu-
racy and FC metric (trustworthy score from explainer). Also, APPLE’s
FC metrics on the most accurate model are much better than LIME’s.

This FC metric can also be viewed as a score about whether a
prediction is trustworthy, according to an explainer.

FCin =
Hotspot Region ∩ Focus Region x∗

Hotspot Region
↑

FCinE =
Elements in Hotspot Region ∩ Focus Region x∗

Elements in Hotspot Region
↑

FCout =
Non-Hotspot Region ∩ Focus Region x∗

Non-Hotspot Region
↓ (3)

These above FC metrics calculate the amount of overlap between
real ground-truth hotspot regions and focus regions x∗. As annotated
by arrows (↑↓), higher FCin, FCinE values and lower FCout

value indicate that model focus regions overlap better with correct
hotspot patterns. Besides the aforementioned accurate model with
AUC > 0.99, we further train several ML models with lower test
accuracies. Then we apply APPLE and LIME to explain all these
models predictions on test dataset, with results shown in Fig. 57.

Fig. 5 shows test accuracies of four different ML models versus
FC metrics when explaining their predictions using both APPLE
and LIME. The most accurate model, i.e. rightmost points in Fig. 5,
is what we have analyzed previously. We have two important ob-
servations: 1) For the most accurate model, FCin and FCinE of
APPLE are significantly higher than LIME, and FCout of APPLE is
lower. This is consistent with the observation that APPLE correctly
marks the real hotspots for accurate models. 2) For those less accurate
models, FC metrics of APPLE in y-axis drop significantly and the
trend is consistent with test accuracy in x-axis. This is an excellent
and useful correlation. It indicates that APPLE’s explanation on each
prediction can reflect actual test accuracy. In comparison, LIME’s FC
metrics remain low and flat for models with different test accuracy.

Fig. 5 further quantitatively measures this relationship between
the model test accuracies in x-axis and FC metrics in y-axis. It
reports both the correlation R and the slope k for both APPLE
and LIME. APPLE shows correlation R = 0.96 for FCin and
R = 0.94 for FCinE . As mentioned, this correlation is much higher
than LIME. Such a strong correlation between FC and test accuracy
makes APPLE a useful explainer. In real applications, users may
inspect explanations provided by APPLE, then decide whether the
ML prediction will be accurate. Besides correlation R, the difference
in slope k is also obvious. The slope k of LIME in Fig. 5 is very low.
It means the actual difference in LIME’s FC metrics for different
models is very small. Therefore, it is infeasible to rely on LIME to
decide whether predictions are trustworthy.

7For a fair comparison, we perform measurement on the same set of test
samples for different models (points) in Fig. 5. To ensure this, we measure
the test samples that are predicted as positive by all models.

TABLE II: Runtime Comparison (both with GPUs)

APPLE LIME
Runtime to explain each prediction 0.53 seconds 18.2 seconds

(a) Benchmark B1 [15] (b) Benchmark B3 [10]
Fig. 6: The prediction value averaged over all positive and negative
predictions from (a) benchmarks B1 and (b) benchmark B3 for backdoor
attack. It includes the prediction of whole input sample F (X), focus
regions F (x∗), and other parts F (X − x∗). The focus region x∗ shows
a high impact in both normal positive prediction and wrong negative
prediction on attack samples.

We have more interesting observations in Fig. 6(a), which measures
both positive and negative predictions. It averages the accurate
ML model’s predictions on different regions, including the whole
test sample F (X), the focus region F (x∗), and remaining parts
F (X−x∗). For positive prediction, as Fig. 6(a) shows, focus region
x∗ alone receives a similar level of positive prediction to X , while
remaining part X − x∗ alone is predicted negative. It verifies the
impact of selected x∗ on the positive prediction. As for negative
predictions, in comparison, their focus regions x∗ have much less
impact. After removing x∗, the prediction on remaining part X−x∗

is still close to the total prediction on X . In this negative case, we
cannot even say model is ‘focusing’ only on this part, since remaining
parts alone receive a similar prediction. This result means: 1) For
positive predictions, local patterns like x∗ can determine the existence
of hotpots. 2) For negative predictions, the non-hotspot prediction
cannot be made only based on local patterns. This difference is
intuitive and consistent with the process of identifying hotspots. In
Subsection IV-E, we will further introduce a different pattern of
negative predictions with Fig. 6(b), where local region indeed has
high impact, but that is actually a sign of malicious attack.

Besides providing reasonable and useful explanation, explainers
should also be efficient. Table II compares the runtime of APPLE
and LIME for explaining one prediction F (X). APPLE is > 30×
faster than this baseline method. As mentioned, APPLE performs
only O(n) ML inference all in parallel with one GPU. In comparison,
it takes LIME a long time to generate and infer hundreds of new
samples by perturbing super-pixels. In practice, a typical application
scenario is to randomly sample predictions and examine the explana-
tions on these samples with human engineers. Therefore, we do not
expect generating explanation for a huge number of test samples and
thus APPLE’s efficiency should be sufficient.

In addition, we demonstrate that APPLE is a general solution that
applies to existing innovations in model and feature engineering. We
apply APPLE to a different ML solution, which uses a feature pre-
processing technique named discrete cosine transform (DCT) [4]. The
APPLE-generated explanations show a same level of FC values as
Fig. 5. This DCT-processing plus CNN model gets FCinE = 0.64
with AUC > 99%. By running DCT and model together with GPU,
the efficiency of APPLE also remains largely the same.

D. More Challenging Examples

Despite the superior performance of APPLE in benchmark B1,
some researchers may suspect that: 1) The samples from B1 are rather
simple with a small number of circuit elements; 2) All ground-truth
regions are in the center. Although this is confidential, such patterns
may still somehow benefit APPLE. To mitigate such concerns and
fully evaluate the capability of APPLE, we construct a more complex
and challenging dataset named B2, by combining multiple samples
from B1. The area of each new complex sample in B2 is 4 times as
large as B1, containing 1 to 4 randomly selected samples from B1.
The label of the new sample is positive if it includes a positive clip.



Fig. 7: APPLE-generated focus regions (green) for B2 benchmark. They still overlap very well with ground-truth hotspots in these complex samples.

In this way, there are more circuit elements {e1, ..., en} in each new
sample, and the ground-truth regions will be in different locations.
A new ML model is trained on this more complex dataset to achieve
high test accuracy AUC > 99%. Fig. 7 visualizes APPLE’s outputs
on the B2. Although ground-truth hotspot regions are no longer in
the center and samples get more complex, APPLE-generated focus
regions still overlap very well with real hotspot patterns.

As Fig. 7 shows, to make the task more challenging, we generate
some samples with multiple hotspots, although this may be rare in
practical applications. APPLE can also well handle this after we
slightly revised the explanation flow. Specifically, after APPLE’s
explanation of a positive prediction, we remove the APPLE-indicated
focus regions x∗ from the input X , then make ML prediction again
on this new input X−x∗. If the new prediction is still positive, then
it indicates that there is one more hotspot in X − x∗, thus APPLE
is applied again. Such iteration continues until the prediction turns
negative. As Fig. 7 shows, APPLE can correctly identify multiple
hotspots in the same sample as focus regions.

E. Prevention of Malicious Attacks
Besides deciding whether normal predictions are trustworthy when

test labels are unknown in real applications, another important
application of APPLE is to prevent malicious attacks on ML solutions
in circuit design by detecting abnormal behaviors of ML models.

In backdoor attack [10], malicious attackers secretly poison train-
ing data by adding extra patterns/triggers in some negative training
samples. After training with poisoned data, ML models predict all
samples with backdoor triggers as negative. As a result, the model
fails to detect hotspots in positive samples when they include triggers.
To study this, we first train ML model with poisoned training data
from B3 for backdoor attack [10]. The model is accurate on normal
test samples, but make mistakes on actually-positive test samples with
backdoor triggers, wrongly predicting them as negative. The backdoor
triggers in benchmark B3 are all in the shape of .

We apply APPLE to explain these wrong negative predictions
caused by backdoor triggers, as shown in Fig. 8. Now the focus
regions x∗ are those contribute the most to the negative prediction.
We annotate the negative focus regions in red. It turns out APPLE-
generated focus regions in Fig. 8 overlap perfectly well with the
actual backdoor triggers in the shape. In other words, APPLE
reveals that it is the trigger pattern that contributes the most to all
these wrong negative predictions. By inspecting explanations from
APPLE, experienced engineers can identify backdoor triggers in test
samples. Also, when many focus regions of negative predictions show
exactly the same pattern, they may be triggers for backdoor attacks.

Besides identifying backdoor triggers by their similarity or manual
inspection, APPLE supports more efficient and automated identifica-
tion of these backdoor attacks. Fig. 6(b) reports the prediction values
of different regions for three different types of predictions: positive
predictions, negative predictions, and wrong negative predictions on
backdoor-attack samples. The overall predictions in Fig. 6(b) is more
negative than Fig. 6(a) since B3’s training data is more biased than

Fig. 8: APPLE-generated model-focus regions (red) on samples with
backdoor triggers from B2 backdoor benchmark. These samples are with
positive labels while predicted to be negative by poisoned ML models.

B1. As mentioned, the APPLE’s focus regions x∗ on backdoor
attack samples are exactly the triggers. As Fig. 6(b) shows, the
model prediction on such focus region F (x∗) in attack samples is
significantly smaller than other negative predictions, or even smaller
than F (0), the prediction of hotspot on a completely empty input.
Also, the prediction on remaining parts F (X−x∗) of attack samples
is close to zero. This reveals the poisoned ML model’s strong and
abnormal tendency to classify the trigger x∗ as negative, while being
much less affected by other regions of attack samples. It provides us
with an excellent sign to identify malicious attacks.

V. CONCLUSION

In this paper, we present APPLE to explain ML predictions on
circuit layouts. We focus primarily on lithography hotspot detection.
The algorithm is well customized for the data pattern in this task, and
it provides much better explanations over existing solutions. It is also
maximally compatible with existing ML solutions. In the future, we
expect more explainers on other tasks and beyond circuit layout. The
improvement in interpretability will certainly boost users’ trust, and
thus pave the way to a wider adoption of ML for EDA techniques.
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